1080 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1080 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This register allocator allocates registers to a basic block at a time,
 | 
						|
// attempting to keep values in registers and reusing registers as appropriate.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/RegAllocRegistry.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/IndexedMap.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumStores, "Number of stores added");
 | 
						|
STATISTIC(NumLoads , "Number of loads added");
 | 
						|
 | 
						|
static RegisterRegAlloc
 | 
						|
  localRegAlloc("local", "local register allocator",
 | 
						|
                createLocalRegisterAllocator);
 | 
						|
 | 
						|
namespace {
 | 
						|
  class RALocal : public MachineFunctionPass {
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    RALocal() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {}
 | 
						|
  private:
 | 
						|
    const TargetMachine *TM;
 | 
						|
    MachineFunction *MF;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
 | 
						|
    // StackSlotForVirtReg - Maps virtual regs to the frame index where these
 | 
						|
    // values are spilled.
 | 
						|
    IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
 | 
						|
 | 
						|
    // Virt2PhysRegMap - This map contains entries for each virtual register
 | 
						|
    // that is currently available in a physical register.
 | 
						|
    IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
 | 
						|
 | 
						|
    unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
 | 
						|
      return Virt2PhysRegMap[VirtReg];
 | 
						|
    }
 | 
						|
 | 
						|
    // PhysRegsUsed - This array is effectively a map, containing entries for
 | 
						|
    // each physical register that currently has a value (ie, it is in
 | 
						|
    // Virt2PhysRegMap).  The value mapped to is the virtual register
 | 
						|
    // corresponding to the physical register (the inverse of the
 | 
						|
    // Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned
 | 
						|
    // because it is used by a future instruction, and to -2 if it is not
 | 
						|
    // allocatable.  If the entry for a physical register is -1, then the
 | 
						|
    // physical register is "not in the map".
 | 
						|
    //
 | 
						|
    std::vector<int> PhysRegsUsed;
 | 
						|
 | 
						|
    // PhysRegsUseOrder - This contains a list of the physical registers that
 | 
						|
    // currently have a virtual register value in them.  This list provides an
 | 
						|
    // ordering of registers, imposing a reallocation order.  This list is only
 | 
						|
    // used if all registers are allocated and we have to spill one, in which
 | 
						|
    // case we spill the least recently used register.  Entries at the front of
 | 
						|
    // the list are the least recently used registers, entries at the back are
 | 
						|
    // the most recently used.
 | 
						|
    //
 | 
						|
    std::vector<unsigned> PhysRegsUseOrder;
 | 
						|
 | 
						|
    // Virt2LastUseMap - This maps each virtual register to its last use
 | 
						|
    // (MachineInstr*, operand index pair).
 | 
						|
    IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor>
 | 
						|
    Virt2LastUseMap;
 | 
						|
 | 
						|
    std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) {
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
 | 
						|
      return Virt2LastUseMap[Reg];
 | 
						|
    }
 | 
						|
 | 
						|
    // VirtRegModified - This bitset contains information about which virtual
 | 
						|
    // registers need to be spilled back to memory when their registers are
 | 
						|
    // scavenged.  If a virtual register has simply been rematerialized, there
 | 
						|
    // is no reason to spill it to memory when we need the register back.
 | 
						|
    //
 | 
						|
    BitVector VirtRegModified;
 | 
						|
    
 | 
						|
    // UsedInMultipleBlocks - Tracks whether a particular register is used in
 | 
						|
    // more than one block.
 | 
						|
    BitVector UsedInMultipleBlocks;
 | 
						|
 | 
						|
    void markVirtRegModified(unsigned Reg, bool Val = true) {
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
 | 
						|
      Reg -= TargetRegisterInfo::FirstVirtualRegister;
 | 
						|
      if (Val)
 | 
						|
        VirtRegModified.set(Reg);
 | 
						|
      else
 | 
						|
        VirtRegModified.reset(Reg);
 | 
						|
    }
 | 
						|
 | 
						|
    bool isVirtRegModified(unsigned Reg) const {
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
 | 
						|
      assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
 | 
						|
             && "Illegal virtual register!");
 | 
						|
      return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
 | 
						|
    }
 | 
						|
 | 
						|
    void AddToPhysRegsUseOrder(unsigned Reg) {
 | 
						|
      std::vector<unsigned>::iterator It =
 | 
						|
        std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg);
 | 
						|
      if (It != PhysRegsUseOrder.end())
 | 
						|
        PhysRegsUseOrder.erase(It);
 | 
						|
      PhysRegsUseOrder.push_back(Reg);
 | 
						|
    }
 | 
						|
 | 
						|
    void MarkPhysRegRecentlyUsed(unsigned Reg) {
 | 
						|
      if (PhysRegsUseOrder.empty() ||
 | 
						|
          PhysRegsUseOrder.back() == Reg) return;  // Already most recently used
 | 
						|
 | 
						|
      for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
 | 
						|
        if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
 | 
						|
          unsigned RegMatch = PhysRegsUseOrder[i-1];       // remove from middle
 | 
						|
          PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
 | 
						|
          // Add it to the end of the list
 | 
						|
          PhysRegsUseOrder.push_back(RegMatch);
 | 
						|
          if (RegMatch == Reg)
 | 
						|
            return;    // Found an exact match, exit early
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
  public:
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "Local Register Allocator";
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addRequiredID(PHIEliminationID);
 | 
						|
      AU.addRequiredID(TwoAddressInstructionPassID);
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// runOnMachineFunction - Register allocate the whole function
 | 
						|
    bool runOnMachineFunction(MachineFunction &Fn);
 | 
						|
 | 
						|
    /// AllocateBasicBlock - Register allocate the specified basic block.
 | 
						|
    void AllocateBasicBlock(MachineBasicBlock &MBB);
 | 
						|
 | 
						|
 | 
						|
    /// areRegsEqual - This method returns true if the specified registers are
 | 
						|
    /// related to each other.  To do this, it checks to see if they are equal
 | 
						|
    /// or if the first register is in the alias set of the second register.
 | 
						|
    ///
 | 
						|
    bool areRegsEqual(unsigned R1, unsigned R2) const {
 | 
						|
      if (R1 == R2) return true;
 | 
						|
      for (const unsigned *AliasSet = TRI->getAliasSet(R2);
 | 
						|
           *AliasSet; ++AliasSet) {
 | 
						|
        if (*AliasSet == R1) return true;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /// getStackSpaceFor - This returns the frame index of the specified virtual
 | 
						|
    /// register on the stack, allocating space if necessary.
 | 
						|
    int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
 | 
						|
 | 
						|
    /// removePhysReg - This method marks the specified physical register as no
 | 
						|
    /// longer being in use.
 | 
						|
    ///
 | 
						|
    void removePhysReg(unsigned PhysReg);
 | 
						|
 | 
						|
    /// spillVirtReg - This method spills the value specified by PhysReg into
 | 
						|
    /// the virtual register slot specified by VirtReg.  It then updates the RA
 | 
						|
    /// data structures to indicate the fact that PhysReg is now available.
 | 
						|
    ///
 | 
						|
    void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
 | 
						|
                      unsigned VirtReg, unsigned PhysReg);
 | 
						|
 | 
						|
    /// spillPhysReg - This method spills the specified physical register into
 | 
						|
    /// the virtual register slot associated with it.  If OnlyVirtRegs is set to
 | 
						|
    /// true, then the request is ignored if the physical register does not
 | 
						|
    /// contain a virtual register.
 | 
						|
    ///
 | 
						|
    void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
 | 
						|
                      unsigned PhysReg, bool OnlyVirtRegs = false);
 | 
						|
 | 
						|
    /// assignVirtToPhysReg - This method updates local state so that we know
 | 
						|
    /// that PhysReg is the proper container for VirtReg now.  The physical
 | 
						|
    /// register must not be used for anything else when this is called.
 | 
						|
    ///
 | 
						|
    void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
 | 
						|
 | 
						|
    /// isPhysRegAvailable - Return true if the specified physical register is
 | 
						|
    /// free and available for use.  This also includes checking to see if
 | 
						|
    /// aliased registers are all free...
 | 
						|
    ///
 | 
						|
    bool isPhysRegAvailable(unsigned PhysReg) const;
 | 
						|
 | 
						|
    /// getFreeReg - Look to see if there is a free register available in the
 | 
						|
    /// specified register class.  If not, return 0.
 | 
						|
    ///
 | 
						|
    unsigned getFreeReg(const TargetRegisterClass *RC);
 | 
						|
 | 
						|
    /// getReg - Find a physical register to hold the specified virtual
 | 
						|
    /// register.  If all compatible physical registers are used, this method
 | 
						|
    /// spills the last used virtual register to the stack, and uses that
 | 
						|
    /// register. If NoFree is true, that means the caller knows there isn't
 | 
						|
    /// a free register, do not call getFreeReg().
 | 
						|
    unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
 | 
						|
                    unsigned VirtReg, bool NoFree = false);
 | 
						|
 | 
						|
    /// reloadVirtReg - This method transforms the specified virtual
 | 
						|
    /// register use to refer to a physical register.  This method may do this
 | 
						|
    /// in one of several ways: if the register is available in a physical
 | 
						|
    /// register already, it uses that physical register.  If the value is not
 | 
						|
    /// in a physical register, and if there are physical registers available,
 | 
						|
    /// it loads it into a register.  If register pressure is high, and it is
 | 
						|
    /// possible, it tries to fold the load of the virtual register into the
 | 
						|
    /// instruction itself.  It avoids doing this if register pressure is low to
 | 
						|
    /// improve the chance that subsequent instructions can use the reloaded
 | 
						|
    /// value.  This method returns the modified instruction.
 | 
						|
    ///
 | 
						|
    MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
 | 
						|
                                unsigned OpNum, SmallSet<unsigned, 4> &RRegs);
 | 
						|
 | 
						|
    /// ComputeLocalLiveness - Computes liveness of registers within a basic
 | 
						|
    /// block, setting the killed/dead flags as appropriate.
 | 
						|
    void ComputeLocalLiveness(MachineBasicBlock& MBB);
 | 
						|
 | 
						|
    void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
 | 
						|
                       unsigned PhysReg);
 | 
						|
  };
 | 
						|
  char RALocal::ID = 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getStackSpaceFor - This allocates space for the specified virtual register
 | 
						|
/// to be held on the stack.
 | 
						|
int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
 | 
						|
  // Find the location Reg would belong...
 | 
						|
  int SS = StackSlotForVirtReg[VirtReg];
 | 
						|
  if (SS != -1)
 | 
						|
    return SS;          // Already has space allocated?
 | 
						|
 | 
						|
  // Allocate a new stack object for this spill location...
 | 
						|
  int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
 | 
						|
                                                       RC->getAlignment(),true);
 | 
						|
 | 
						|
  // Assign the slot...
 | 
						|
  StackSlotForVirtReg[VirtReg] = FrameIdx;
 | 
						|
  return FrameIdx;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// removePhysReg - This method marks the specified physical register as no
 | 
						|
/// longer being in use.
 | 
						|
///
 | 
						|
void RALocal::removePhysReg(unsigned PhysReg) {
 | 
						|
  PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used
 | 
						|
 | 
						|
  std::vector<unsigned>::iterator It =
 | 
						|
    std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
 | 
						|
  if (It != PhysRegsUseOrder.end())
 | 
						|
    PhysRegsUseOrder.erase(It);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// spillVirtReg - This method spills the value specified by PhysReg into the
 | 
						|
/// virtual register slot specified by VirtReg.  It then updates the RA data
 | 
						|
/// structures to indicate the fact that PhysReg is now available.
 | 
						|
///
 | 
						|
void RALocal::spillVirtReg(MachineBasicBlock &MBB,
 | 
						|
                           MachineBasicBlock::iterator I,
 | 
						|
                           unsigned VirtReg, unsigned PhysReg) {
 | 
						|
  assert(VirtReg && "Spilling a physical register is illegal!"
 | 
						|
         " Must not have appropriate kill for the register or use exists beyond"
 | 
						|
         " the intended one.");
 | 
						|
  DEBUG(errs() << "  Spilling register " << TRI->getName(PhysReg)
 | 
						|
               << " containing %reg" << VirtReg);
 | 
						|
  
 | 
						|
  if (!isVirtRegModified(VirtReg)) {
 | 
						|
    DEBUG(errs() << " which has not been modified, so no store necessary!");
 | 
						|
    std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg);
 | 
						|
    if (LastUse.first)
 | 
						|
      LastUse.first->getOperand(LastUse.second).setIsKill();
 | 
						|
  } else {
 | 
						|
    // Otherwise, there is a virtual register corresponding to this physical
 | 
						|
    // register.  We only need to spill it into its stack slot if it has been
 | 
						|
    // modified.
 | 
						|
    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
 | 
						|
    int FrameIndex = getStackSpaceFor(VirtReg, RC);
 | 
						|
    DEBUG(errs() << " to stack slot #" << FrameIndex);
 | 
						|
    // If the instruction reads the register that's spilled, (e.g. this can
 | 
						|
    // happen if it is a move to a physical register), then the spill
 | 
						|
    // instruction is not a kill.
 | 
						|
    bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg));
 | 
						|
    TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC);
 | 
						|
    ++NumStores;   // Update statistics
 | 
						|
  }
 | 
						|
 | 
						|
  getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available
 | 
						|
 | 
						|
  DEBUG(errs() << '\n');
 | 
						|
  removePhysReg(PhysReg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// spillPhysReg - This method spills the specified physical register into the
 | 
						|
/// virtual register slot associated with it.  If OnlyVirtRegs is set to true,
 | 
						|
/// then the request is ignored if the physical register does not contain a
 | 
						|
/// virtual register.
 | 
						|
///
 | 
						|
void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
 | 
						|
                           unsigned PhysReg, bool OnlyVirtRegs) {
 | 
						|
  if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used!
 | 
						|
    assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
 | 
						|
    if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
 | 
						|
      spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
 | 
						|
  } else {
 | 
						|
    // If the selected register aliases any other registers, we must make
 | 
						|
    // sure that one of the aliases isn't alive.
 | 
						|
    for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
 | 
						|
         *AliasSet; ++AliasSet)
 | 
						|
      if (PhysRegsUsed[*AliasSet] != -1 &&     // Spill aliased register.
 | 
						|
          PhysRegsUsed[*AliasSet] != -2)       // If allocatable.
 | 
						|
          if (PhysRegsUsed[*AliasSet])
 | 
						|
            spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// assignVirtToPhysReg - This method updates local state so that we know
 | 
						|
/// that PhysReg is the proper container for VirtReg now.  The physical
 | 
						|
/// register must not be used for anything else when this is called.
 | 
						|
///
 | 
						|
void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
 | 
						|
  assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
 | 
						|
  // Update information to note the fact that this register was just used, and
 | 
						|
  // it holds VirtReg.
 | 
						|
  PhysRegsUsed[PhysReg] = VirtReg;
 | 
						|
  getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
 | 
						|
  AddToPhysRegsUseOrder(PhysReg);   // New use of PhysReg
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isPhysRegAvailable - Return true if the specified physical register is free
 | 
						|
/// and available for use.  This also includes checking to see if aliased
 | 
						|
/// registers are all free...
 | 
						|
///
 | 
						|
bool RALocal::isPhysRegAvailable(unsigned PhysReg) const {
 | 
						|
  if (PhysRegsUsed[PhysReg] != -1) return false;
 | 
						|
 | 
						|
  // If the selected register aliases any other allocated registers, it is
 | 
						|
  // not free!
 | 
						|
  for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
 | 
						|
       *AliasSet; ++AliasSet)
 | 
						|
    if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
 | 
						|
      return false;                    // Can't use this reg then.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getFreeReg - Look to see if there is a free register available in the
 | 
						|
/// specified register class.  If not, return 0.
 | 
						|
///
 | 
						|
unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) {
 | 
						|
  // Get iterators defining the range of registers that are valid to allocate in
 | 
						|
  // this class, which also specifies the preferred allocation order.
 | 
						|
  TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
 | 
						|
  TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
 | 
						|
 | 
						|
  for (; RI != RE; ++RI)
 | 
						|
    if (isPhysRegAvailable(*RI)) {       // Is reg unused?
 | 
						|
      assert(*RI != 0 && "Cannot use register!");
 | 
						|
      return *RI; // Found an unused register!
 | 
						|
    }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getReg - Find a physical register to hold the specified virtual
 | 
						|
/// register.  If all compatible physical registers are used, this method spills
 | 
						|
/// the last used virtual register to the stack, and uses that register.
 | 
						|
///
 | 
						|
unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I,
 | 
						|
                         unsigned VirtReg, bool NoFree) {
 | 
						|
  const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
 | 
						|
 | 
						|
  // First check to see if we have a free register of the requested type...
 | 
						|
  unsigned PhysReg = NoFree ? 0 : getFreeReg(RC);
 | 
						|
 | 
						|
  // If we didn't find an unused register, scavenge one now!
 | 
						|
  if (PhysReg == 0) {
 | 
						|
    assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
 | 
						|
 | 
						|
    // Loop over all of the preallocated registers from the least recently used
 | 
						|
    // to the most recently used.  When we find one that is capable of holding
 | 
						|
    // our register, use it.
 | 
						|
    for (unsigned i = 0; PhysReg == 0; ++i) {
 | 
						|
      assert(i != PhysRegsUseOrder.size() &&
 | 
						|
             "Couldn't find a register of the appropriate class!");
 | 
						|
 | 
						|
      unsigned R = PhysRegsUseOrder[i];
 | 
						|
 | 
						|
      // We can only use this register if it holds a virtual register (ie, it
 | 
						|
      // can be spilled).  Do not use it if it is an explicitly allocated
 | 
						|
      // physical register!
 | 
						|
      assert(PhysRegsUsed[R] != -1 &&
 | 
						|
             "PhysReg in PhysRegsUseOrder, but is not allocated?");
 | 
						|
      if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) {
 | 
						|
        // If the current register is compatible, use it.
 | 
						|
        if (RC->contains(R)) {
 | 
						|
          PhysReg = R;
 | 
						|
          break;
 | 
						|
        } else {
 | 
						|
          // If one of the registers aliased to the current register is
 | 
						|
          // compatible, use it.
 | 
						|
          for (const unsigned *AliasIt = TRI->getAliasSet(R);
 | 
						|
               *AliasIt; ++AliasIt) {
 | 
						|
            if (RC->contains(*AliasIt) &&
 | 
						|
                // If this is pinned down for some reason, don't use it.  For
 | 
						|
                // example, if CL is pinned, and we run across CH, don't use
 | 
						|
                // CH as justification for using scavenging ECX (which will
 | 
						|
                // fail).
 | 
						|
                PhysRegsUsed[*AliasIt] != 0 &&
 | 
						|
                
 | 
						|
                // Make sure the register is allocatable.  Don't allocate SIL on
 | 
						|
                // x86-32.
 | 
						|
                PhysRegsUsed[*AliasIt] != -2) {
 | 
						|
              PhysReg = *AliasIt;    // Take an aliased register
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    assert(PhysReg && "Physical register not assigned!?!?");
 | 
						|
 | 
						|
    // At this point PhysRegsUseOrder[i] is the least recently used register of
 | 
						|
    // compatible register class.  Spill it to memory and reap its remains.
 | 
						|
    spillPhysReg(MBB, I, PhysReg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we know which register we need to assign this to, do it now!
 | 
						|
  assignVirtToPhysReg(VirtReg, PhysReg);
 | 
						|
  return PhysReg;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// reloadVirtReg - This method transforms the specified virtual
 | 
						|
/// register use to refer to a physical register.  This method may do this in
 | 
						|
/// one of several ways: if the register is available in a physical register
 | 
						|
/// already, it uses that physical register.  If the value is not in a physical
 | 
						|
/// register, and if there are physical registers available, it loads it into a
 | 
						|
/// register.  If register pressure is high, and it is possible, it tries to
 | 
						|
/// fold the load of the virtual register into the instruction itself.  It
 | 
						|
/// avoids doing this if register pressure is low to improve the chance that
 | 
						|
/// subsequent instructions can use the reloaded value.  This method returns the
 | 
						|
/// modified instruction.
 | 
						|
///
 | 
						|
MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
 | 
						|
                                     unsigned OpNum,
 | 
						|
                                     SmallSet<unsigned, 4> &ReloadedRegs) {
 | 
						|
  unsigned VirtReg = MI->getOperand(OpNum).getReg();
 | 
						|
 | 
						|
  // If the virtual register is already available, just update the instruction
 | 
						|
  // and return.
 | 
						|
  if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
 | 
						|
    MarkPhysRegRecentlyUsed(PR);       // Already have this value available!
 | 
						|
    MI->getOperand(OpNum).setReg(PR);  // Assign the input register
 | 
						|
    getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
 | 
						|
    return MI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we need to fold it into the current instruction, or reload it.
 | 
						|
  // If we have registers available to hold the value, use them.
 | 
						|
  const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
 | 
						|
  unsigned PhysReg = getFreeReg(RC);
 | 
						|
  int FrameIndex = getStackSpaceFor(VirtReg, RC);
 | 
						|
 | 
						|
  if (PhysReg) {   // Register is available, allocate it!
 | 
						|
    assignVirtToPhysReg(VirtReg, PhysReg);
 | 
						|
  } else {         // No registers available.
 | 
						|
    // Force some poor hapless value out of the register file to
 | 
						|
    // make room for the new register, and reload it.
 | 
						|
    PhysReg = getReg(MBB, MI, VirtReg, true);
 | 
						|
  }
 | 
						|
 | 
						|
  markVirtRegModified(VirtReg, false);   // Note that this reg was just reloaded
 | 
						|
 | 
						|
  DEBUG(errs() << "  Reloading %reg" << VirtReg << " into "
 | 
						|
               << TRI->getName(PhysReg) << "\n");
 | 
						|
 | 
						|
  // Add move instruction(s)
 | 
						|
  TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
 | 
						|
  ++NumLoads;    // Update statistics
 | 
						|
 | 
						|
  MF->getRegInfo().setPhysRegUsed(PhysReg);
 | 
						|
  MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register
 | 
						|
  getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
 | 
						|
 | 
						|
  if (!ReloadedRegs.insert(PhysReg)) {
 | 
						|
    std::string msg;
 | 
						|
    raw_string_ostream Msg(msg);
 | 
						|
    Msg << "Ran out of registers during register allocation!";
 | 
						|
    if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
 | 
						|
      Msg << "\nPlease check your inline asm statement for invalid "
 | 
						|
           << "constraints:\n";
 | 
						|
      MI->print(Msg, TM);
 | 
						|
    }
 | 
						|
    llvm_report_error(Msg.str());
 | 
						|
  }
 | 
						|
  for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
 | 
						|
       *SubRegs; ++SubRegs) {
 | 
						|
    if (!ReloadedRegs.insert(*SubRegs)) {
 | 
						|
      std::string msg;
 | 
						|
      raw_string_ostream Msg(msg);
 | 
						|
      Msg << "Ran out of registers during register allocation!";
 | 
						|
      if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
 | 
						|
        Msg << "\nPlease check your inline asm statement for invalid "
 | 
						|
             << "constraints:\n";
 | 
						|
        MI->print(Msg, TM);
 | 
						|
      }
 | 
						|
      llvm_report_error(Msg.str());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MI;
 | 
						|
}
 | 
						|
 | 
						|
/// isReadModWriteImplicitKill - True if this is an implicit kill for a
 | 
						|
/// read/mod/write register, i.e. update partial register.
 | 
						|
static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand& MO = MI->getOperand(i);
 | 
						|
    if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
 | 
						|
        MO.isDef() && !MO.isDead())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isReadModWriteImplicitDef - True if this is an implicit def for a
 | 
						|
/// read/mod/write register, i.e. update partial register.
 | 
						|
static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand& MO = MI->getOperand(i);
 | 
						|
    if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
 | 
						|
        !MO.isDef() && MO.isKill())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// precedes - Helper function to determine with MachineInstr A
 | 
						|
// precedes MachineInstr B within the same MBB.
 | 
						|
static bool precedes(MachineBasicBlock::iterator A,
 | 
						|
                     MachineBasicBlock::iterator B) {
 | 
						|
  if (A == B)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  MachineBasicBlock::iterator I = A->getParent()->begin();
 | 
						|
  while (I != A->getParent()->end()) {
 | 
						|
    if (I == A)
 | 
						|
      return true;
 | 
						|
    else if (I == B)
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    ++I;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeLocalLiveness - Computes liveness of registers within a basic
 | 
						|
/// block, setting the killed/dead flags as appropriate.
 | 
						|
void RALocal::ComputeLocalLiveness(MachineBasicBlock& MBB) {
 | 
						|
  MachineRegisterInfo& MRI = MBB.getParent()->getRegInfo();
 | 
						|
  // Keep track of the most recently seen previous use or def of each reg, 
 | 
						|
  // so that we can update them with dead/kill markers.
 | 
						|
  DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef;
 | 
						|
  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand& MO = I->getOperand(i);
 | 
						|
      // Uses don't trigger any flags, but we need to save
 | 
						|
      // them for later.  Also, we have to process these
 | 
						|
      // _before_ processing the defs, since an instr
 | 
						|
      // uses regs before it defs them.
 | 
						|
      if (MO.isReg() && MO.getReg() && MO.isUse()) {
 | 
						|
        LastUseDef[MO.getReg()] = std::make_pair(I, i);
 | 
						|
        
 | 
						|
        
 | 
						|
        if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue;
 | 
						|
        
 | 
						|
        const unsigned* Aliases = TRI->getAliasSet(MO.getReg());
 | 
						|
        if (Aliases) {
 | 
						|
          while (*Aliases) {
 | 
						|
            DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
 | 
						|
              alias = LastUseDef.find(*Aliases);
 | 
						|
            
 | 
						|
            if (alias != LastUseDef.end() && alias->second.first != I)
 | 
						|
              LastUseDef[*Aliases] = std::make_pair(I, i);
 | 
						|
            
 | 
						|
            ++Aliases;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand& MO = I->getOperand(i);
 | 
						|
      // Defs others than 2-addr redefs _do_ trigger flag changes:
 | 
						|
      //   - A def followed by a def is dead
 | 
						|
      //   - A use followed by a def is a kill
 | 
						|
      if (MO.isReg() && MO.getReg() && MO.isDef()) {
 | 
						|
        DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
 | 
						|
          last = LastUseDef.find(MO.getReg());
 | 
						|
        if (last != LastUseDef.end()) {
 | 
						|
          // Check if this is a two address instruction.  If so, then
 | 
						|
          // the def does not kill the use.
 | 
						|
          if (last->second.first == I &&
 | 
						|
              I->isRegTiedToUseOperand(i))
 | 
						|
            continue;
 | 
						|
          
 | 
						|
          MachineOperand& lastUD =
 | 
						|
                      last->second.first->getOperand(last->second.second);
 | 
						|
          if (lastUD.isDef())
 | 
						|
            lastUD.setIsDead(true);
 | 
						|
          else
 | 
						|
            lastUD.setIsKill(true);
 | 
						|
        }
 | 
						|
        
 | 
						|
        LastUseDef[MO.getReg()] = std::make_pair(I, i);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Live-out (of the function) registers contain return values of the function,
 | 
						|
  // so we need to make sure they are alive at return time.
 | 
						|
  if (!MBB.empty() && MBB.back().getDesc().isReturn()) {
 | 
						|
    MachineInstr* Ret = &MBB.back();
 | 
						|
    for (MachineRegisterInfo::liveout_iterator
 | 
						|
         I = MF->getRegInfo().liveout_begin(),
 | 
						|
         E = MF->getRegInfo().liveout_end(); I != E; ++I)
 | 
						|
      if (!Ret->readsRegister(*I)) {
 | 
						|
        Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
 | 
						|
        LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1);
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Finally, loop over the final use/def of each reg 
 | 
						|
  // in the block and determine if it is dead.
 | 
						|
  for (DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
 | 
						|
       I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) {
 | 
						|
    MachineInstr* MI = I->second.first;
 | 
						|
    unsigned idx = I->second.second;
 | 
						|
    MachineOperand& MO = MI->getOperand(idx);
 | 
						|
    
 | 
						|
    bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg());
 | 
						|
    
 | 
						|
    // A crude approximation of "live-out" calculation
 | 
						|
    bool usedOutsideBlock = isPhysReg ? false :   
 | 
						|
          UsedInMultipleBlocks.test(MO.getReg() -  
 | 
						|
                                    TargetRegisterInfo::FirstVirtualRegister);
 | 
						|
    if (!isPhysReg && !usedOutsideBlock)
 | 
						|
      for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
 | 
						|
           UE = MRI.reg_end(); UI != UE; ++UI)
 | 
						|
        // Two cases:
 | 
						|
        // - used in another block
 | 
						|
        // - used in the same block before it is defined (loop)
 | 
						|
        if (UI->getParent() != &MBB ||
 | 
						|
            (MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI))) {
 | 
						|
          UsedInMultipleBlocks.set(MO.getReg() - 
 | 
						|
                                   TargetRegisterInfo::FirstVirtualRegister);
 | 
						|
          usedOutsideBlock = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    
 | 
						|
    // Physical registers and those that are not live-out of the block
 | 
						|
    // are killed/dead at their last use/def within this block.
 | 
						|
    if (isPhysReg || !usedOutsideBlock) {
 | 
						|
      if (MO.isUse()) {
 | 
						|
        // Don't mark uses that are tied to defs as kills.
 | 
						|
        if (!MI->isRegTiedToDefOperand(idx))
 | 
						|
          MO.setIsKill(true);
 | 
						|
      } else
 | 
						|
        MO.setIsDead(true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
 | 
						|
  // loop over each instruction
 | 
						|
  MachineBasicBlock::iterator MII = MBB.begin();
 | 
						|
  
 | 
						|
  DEBUG({
 | 
						|
      const BasicBlock *LBB = MBB.getBasicBlock();
 | 
						|
      if (LBB)
 | 
						|
        errs() << "\nStarting RegAlloc of BB: " << LBB->getName();
 | 
						|
    });
 | 
						|
 | 
						|
  // Add live-in registers as active.
 | 
						|
  for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(),
 | 
						|
         E = MBB.livein_end(); I != E; ++I) {
 | 
						|
    unsigned Reg = *I;
 | 
						|
    MF->getRegInfo().setPhysRegUsed(Reg);
 | 
						|
    PhysRegsUsed[Reg] = 0;            // It is free and reserved now
 | 
						|
    AddToPhysRegsUseOrder(Reg); 
 | 
						|
    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | 
						|
         *SubRegs; ++SubRegs) {
 | 
						|
      if (PhysRegsUsed[*SubRegs] != -2) {
 | 
						|
        AddToPhysRegsUseOrder(*SubRegs); 
 | 
						|
        PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
 | 
						|
        MF->getRegInfo().setPhysRegUsed(*SubRegs);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  ComputeLocalLiveness(MBB);
 | 
						|
  
 | 
						|
  // Otherwise, sequentially allocate each instruction in the MBB.
 | 
						|
  while (MII != MBB.end()) {
 | 
						|
    MachineInstr *MI = MII++;
 | 
						|
    const TargetInstrDesc &TID = MI->getDesc();
 | 
						|
    DEBUG({
 | 
						|
        errs() << "\nStarting RegAlloc of: " << *MI;
 | 
						|
        errs() << "  Regs have values: ";
 | 
						|
        for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
 | 
						|
          if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
 | 
						|
            errs() << "[" << TRI->getName(i)
 | 
						|
                   << ",%reg" << PhysRegsUsed[i] << "] ";
 | 
						|
        errs() << '\n';
 | 
						|
      });
 | 
						|
 | 
						|
    // Loop over the implicit uses, making sure that they are at the head of the
 | 
						|
    // use order list, so they don't get reallocated.
 | 
						|
    if (TID.ImplicitUses) {
 | 
						|
      for (const unsigned *ImplicitUses = TID.ImplicitUses;
 | 
						|
           *ImplicitUses; ++ImplicitUses)
 | 
						|
        MarkPhysRegRecentlyUsed(*ImplicitUses);
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<unsigned, 8> Kills;
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand& MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isKill()) {
 | 
						|
        if (!MO.isImplicit())
 | 
						|
          Kills.push_back(MO.getReg());
 | 
						|
        else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
 | 
						|
          // These are extra physical register kills when a sub-register
 | 
						|
          // is defined (def of a sub-register is a read/mod/write of the
 | 
						|
          // larger registers). Ignore.
 | 
						|
          Kills.push_back(MO.getReg());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If any physical regs are earlyclobber, spill any value they might
 | 
						|
    // have in them, then mark them unallocatable.
 | 
						|
    // If any virtual regs are earlyclobber, allocate them now (before
 | 
						|
    // freeing inputs that are killed).
 | 
						|
    if (MI->getOpcode()==TargetInstrInfo::INLINEASM) {
 | 
						|
      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
 | 
						|
        MachineOperand& MO = MI->getOperand(i);
 | 
						|
        if (MO.isReg() && MO.isDef() && MO.isEarlyClobber() &&
 | 
						|
            MO.getReg()) {
 | 
						|
          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | 
						|
            unsigned DestVirtReg = MO.getReg();
 | 
						|
            unsigned DestPhysReg;
 | 
						|
 | 
						|
            // If DestVirtReg already has a value, use it.
 | 
						|
            if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
 | 
						|
              DestPhysReg = getReg(MBB, MI, DestVirtReg);
 | 
						|
            MF->getRegInfo().setPhysRegUsed(DestPhysReg);
 | 
						|
            markVirtRegModified(DestVirtReg);
 | 
						|
            getVirtRegLastUse(DestVirtReg) =
 | 
						|
                   std::make_pair((MachineInstr*)0, 0);
 | 
						|
            DEBUG(errs() << "  Assigning " << TRI->getName(DestPhysReg)
 | 
						|
                         << " to %reg" << DestVirtReg << "\n");
 | 
						|
            MO.setReg(DestPhysReg);  // Assign the earlyclobber register
 | 
						|
          } else {
 | 
						|
            unsigned Reg = MO.getReg();
 | 
						|
            if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
 | 
						|
            // These are extra physical register defs when a sub-register
 | 
						|
            // is defined (def of a sub-register is a read/mod/write of the
 | 
						|
            // larger registers). Ignore.
 | 
						|
            if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
 | 
						|
 | 
						|
            MF->getRegInfo().setPhysRegUsed(Reg);
 | 
						|
            spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
 | 
						|
            PhysRegsUsed[Reg] = 0;            // It is free and reserved now
 | 
						|
            AddToPhysRegsUseOrder(Reg); 
 | 
						|
 | 
						|
            for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | 
						|
                 *SubRegs; ++SubRegs) {
 | 
						|
              if (PhysRegsUsed[*SubRegs] != -2) {
 | 
						|
                MF->getRegInfo().setPhysRegUsed(*SubRegs);
 | 
						|
                PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
 | 
						|
                AddToPhysRegsUseOrder(*SubRegs); 
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Get the used operands into registers.  This has the potential to spill
 | 
						|
    // incoming values if we are out of registers.  Note that we completely
 | 
						|
    // ignore physical register uses here.  We assume that if an explicit
 | 
						|
    // physical register is referenced by the instruction, that it is guaranteed
 | 
						|
    // to be live-in, or the input is badly hosed.
 | 
						|
    //
 | 
						|
    SmallSet<unsigned, 4> ReloadedRegs;
 | 
						|
    for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
 | 
						|
      MachineOperand& MO = MI->getOperand(i);
 | 
						|
      // here we are looking for only used operands (never def&use)
 | 
						|
      if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
 | 
						|
          TargetRegisterInfo::isVirtualRegister(MO.getReg()))
 | 
						|
        MI = reloadVirtReg(MBB, MI, i, ReloadedRegs);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this instruction is the last user of this register, kill the
 | 
						|
    // value, freeing the register being used, so it doesn't need to be
 | 
						|
    // spilled to memory.
 | 
						|
    //
 | 
						|
    for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
 | 
						|
      unsigned VirtReg = Kills[i];
 | 
						|
      unsigned PhysReg = VirtReg;
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
 | 
						|
        // If the virtual register was never materialized into a register, it
 | 
						|
        // might not be in the map, but it won't hurt to zero it out anyway.
 | 
						|
        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
 | 
						|
        PhysReg = PhysRegSlot;
 | 
						|
        PhysRegSlot = 0;
 | 
						|
      } else if (PhysRegsUsed[PhysReg] == -2) {
 | 
						|
        // Unallocatable register dead, ignore.
 | 
						|
        continue;
 | 
						|
      } else {
 | 
						|
        assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
 | 
						|
               "Silently clearing a virtual register?");
 | 
						|
      }
 | 
						|
 | 
						|
      if (PhysReg) {
 | 
						|
        DEBUG(errs() << "  Last use of " << TRI->getName(PhysReg)
 | 
						|
                     << "[%reg" << VirtReg <<"], removing it from live set\n");
 | 
						|
        removePhysReg(PhysReg);
 | 
						|
        for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
 | 
						|
             *SubRegs; ++SubRegs) {
 | 
						|
          if (PhysRegsUsed[*SubRegs] != -2) {
 | 
						|
            DEBUG(errs()  << "  Last use of "
 | 
						|
                          << TRI->getName(*SubRegs) << "[%reg" << VirtReg
 | 
						|
                          <<"], removing it from live set\n");
 | 
						|
            removePhysReg(*SubRegs);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Loop over all of the operands of the instruction, spilling registers that
 | 
						|
    // are defined, and marking explicit destinations in the PhysRegsUsed map.
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand& MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
 | 
						|
          !MO.isEarlyClobber() &&
 | 
						|
          TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
 | 
						|
        unsigned Reg = MO.getReg();
 | 
						|
        if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
 | 
						|
        // These are extra physical register defs when a sub-register
 | 
						|
        // is defined (def of a sub-register is a read/mod/write of the
 | 
						|
        // larger registers). Ignore.
 | 
						|
        if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
 | 
						|
 | 
						|
        MF->getRegInfo().setPhysRegUsed(Reg);
 | 
						|
        spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
 | 
						|
        PhysRegsUsed[Reg] = 0;            // It is free and reserved now
 | 
						|
        AddToPhysRegsUseOrder(Reg); 
 | 
						|
 | 
						|
        for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | 
						|
             *SubRegs; ++SubRegs) {
 | 
						|
          if (PhysRegsUsed[*SubRegs] != -2) {
 | 
						|
            MF->getRegInfo().setPhysRegUsed(*SubRegs);
 | 
						|
            PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
 | 
						|
            AddToPhysRegsUseOrder(*SubRegs); 
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Loop over the implicit defs, spilling them as well.
 | 
						|
    if (TID.ImplicitDefs) {
 | 
						|
      for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
 | 
						|
           *ImplicitDefs; ++ImplicitDefs) {
 | 
						|
        unsigned Reg = *ImplicitDefs;
 | 
						|
        if (PhysRegsUsed[Reg] != -2) {
 | 
						|
          spillPhysReg(MBB, MI, Reg, true);
 | 
						|
          AddToPhysRegsUseOrder(Reg); 
 | 
						|
          PhysRegsUsed[Reg] = 0;            // It is free and reserved now
 | 
						|
        }
 | 
						|
        MF->getRegInfo().setPhysRegUsed(Reg);
 | 
						|
        for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | 
						|
             *SubRegs; ++SubRegs) {
 | 
						|
          if (PhysRegsUsed[*SubRegs] != -2) {
 | 
						|
            AddToPhysRegsUseOrder(*SubRegs); 
 | 
						|
            PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
 | 
						|
            MF->getRegInfo().setPhysRegUsed(*SubRegs);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<unsigned, 8> DeadDefs;
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand& MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isDead())
 | 
						|
        DeadDefs.push_back(MO.getReg());
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay, we have allocated all of the source operands and spilled any values
 | 
						|
    // that would be destroyed by defs of this instruction.  Loop over the
 | 
						|
    // explicit defs and assign them to a register, spilling incoming values if
 | 
						|
    // we need to scavenge a register.
 | 
						|
    //
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand& MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isDef() && MO.getReg() &&
 | 
						|
          !MO.isEarlyClobber() &&
 | 
						|
          TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | 
						|
        unsigned DestVirtReg = MO.getReg();
 | 
						|
        unsigned DestPhysReg;
 | 
						|
 | 
						|
        // If DestVirtReg already has a value, use it.
 | 
						|
        if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
 | 
						|
          DestPhysReg = getReg(MBB, MI, DestVirtReg);
 | 
						|
        MF->getRegInfo().setPhysRegUsed(DestPhysReg);
 | 
						|
        markVirtRegModified(DestVirtReg);
 | 
						|
        getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0);
 | 
						|
        DEBUG(errs() << "  Assigning " << TRI->getName(DestPhysReg)
 | 
						|
                     << " to %reg" << DestVirtReg << "\n");
 | 
						|
        MO.setReg(DestPhysReg);  // Assign the output register
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this instruction defines any registers that are immediately dead,
 | 
						|
    // kill them now.
 | 
						|
    //
 | 
						|
    for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
 | 
						|
      unsigned VirtReg = DeadDefs[i];
 | 
						|
      unsigned PhysReg = VirtReg;
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
 | 
						|
        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
 | 
						|
        PhysReg = PhysRegSlot;
 | 
						|
        assert(PhysReg != 0);
 | 
						|
        PhysRegSlot = 0;
 | 
						|
      } else if (PhysRegsUsed[PhysReg] == -2) {
 | 
						|
        // Unallocatable register dead, ignore.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (PhysReg) {
 | 
						|
        DEBUG(errs()  << "  Register " << TRI->getName(PhysReg)
 | 
						|
                      << " [%reg" << VirtReg
 | 
						|
                      << "] is never used, removing it from live set\n");
 | 
						|
        removePhysReg(PhysReg);
 | 
						|
        for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
 | 
						|
             *AliasSet; ++AliasSet) {
 | 
						|
          if (PhysRegsUsed[*AliasSet] != -2) {
 | 
						|
            DEBUG(errs()  << "  Register " << TRI->getName(*AliasSet)
 | 
						|
                          << " [%reg" << *AliasSet
 | 
						|
                          << "] is never used, removing it from live set\n");
 | 
						|
            removePhysReg(*AliasSet);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Finally, if this is a noop copy instruction, zap it.  (Except that if
 | 
						|
    // the copy is dead, it must be kept to avoid messing up liveness info for
 | 
						|
    // the register scavenger.  See pr4100.)
 | 
						|
    unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
 | 
						|
    if (TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
 | 
						|
        SrcReg == DstReg && DeadDefs.empty())
 | 
						|
      MBB.erase(MI);
 | 
						|
  }
 | 
						|
 | 
						|
  MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
 | 
						|
 | 
						|
  // Spill all physical registers holding virtual registers now.
 | 
						|
  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
 | 
						|
    if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
 | 
						|
      if (unsigned VirtReg = PhysRegsUsed[i])
 | 
						|
        spillVirtReg(MBB, MI, VirtReg, i);
 | 
						|
      else
 | 
						|
        removePhysReg(i);
 | 
						|
    }
 | 
						|
 | 
						|
#if 0
 | 
						|
  // This checking code is very expensive.
 | 
						|
  bool AllOk = true;
 | 
						|
  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
 | 
						|
           e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i)
 | 
						|
    if (unsigned PR = Virt2PhysRegMap[i]) {
 | 
						|
      cerr << "Register still mapped: " << i << " -> " << PR << "\n";
 | 
						|
      AllOk = false;
 | 
						|
    }
 | 
						|
  assert(AllOk && "Virtual registers still in phys regs?");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Clear any physical register which appear live at the end of the basic
 | 
						|
  // block, but which do not hold any virtual registers.  e.g., the stack
 | 
						|
  // pointer.
 | 
						|
  PhysRegsUseOrder.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// runOnMachineFunction - Register allocate the whole function
 | 
						|
///
 | 
						|
bool RALocal::runOnMachineFunction(MachineFunction &Fn) {
 | 
						|
  DEBUG(errs() << "Machine Function\n");
 | 
						|
  MF = &Fn;
 | 
						|
  TM = &Fn.getTarget();
 | 
						|
  TRI = TM->getRegisterInfo();
 | 
						|
  TII = TM->getInstrInfo();
 | 
						|
 | 
						|
  PhysRegsUsed.assign(TRI->getNumRegs(), -1);
 | 
						|
  
 | 
						|
  // At various places we want to efficiently check to see whether a register
 | 
						|
  // is allocatable.  To handle this, we mark all unallocatable registers as
 | 
						|
  // being pinned down, permanently.
 | 
						|
  {
 | 
						|
    BitVector Allocable = TRI->getAllocatableSet(Fn);
 | 
						|
    for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
 | 
						|
      if (!Allocable[i])
 | 
						|
        PhysRegsUsed[i] = -2;  // Mark the reg unallocable.
 | 
						|
  }
 | 
						|
 | 
						|
  // initialize the virtual->physical register map to have a 'null'
 | 
						|
  // mapping for all virtual registers
 | 
						|
  unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg();
 | 
						|
  StackSlotForVirtReg.grow(LastVirtReg);
 | 
						|
  Virt2PhysRegMap.grow(LastVirtReg);
 | 
						|
  Virt2LastUseMap.grow(LastVirtReg);
 | 
						|
  VirtRegModified.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
 | 
						|
  UsedInMultipleBlocks.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
 | 
						|
 
 | 
						|
  // Loop over all of the basic blocks, eliminating virtual register references
 | 
						|
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
 | 
						|
       MBB != MBBe; ++MBB)
 | 
						|
    AllocateBasicBlock(*MBB);
 | 
						|
 | 
						|
  StackSlotForVirtReg.clear();
 | 
						|
  PhysRegsUsed.clear();
 | 
						|
  VirtRegModified.clear();
 | 
						|
  UsedInMultipleBlocks.clear();
 | 
						|
  Virt2PhysRegMap.clear();
 | 
						|
  Virt2LastUseMap.clear();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createLocalRegisterAllocator() {
 | 
						|
  return new RALocal();
 | 
						|
}
 |