rt-thread/bsp/k230/drivers/interdrv/hwtimer/drv_timer.c

333 lines
10 KiB
C

/* Copyright (c) 2023, Canaan Bright Sight Co., Ltd
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2006-2025, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
* K230 Hardware Timer Driver
*
* K230 provides 9 timers, 6 general-purpose timers (TIMER0-TIMER5) and
* 3 STC timers.
* This driver only implements the general-purpose timers (TIMER0-TIMER5).
* This driver only supports the ONESHOT mode.
* Support frequency options: 12.5M(min), 25M, 50M, 100M(max)
*/
#include <rtthread.h>
#include <rtdevice.h>
#include "riscv_io.h"
#include "board.h"
#include "ioremap.h"
#include <rtdbg.h>
#include <stdbool.h>
#include <stdio.h>
#include <rthw.h>
#include "sysctl_rst.h"
#include "drv_timer.h"
#include <dfs_posix.h>
static void k230_timer_stop(rt_hwtimer_t *timer);
static void k230_timer_init(rt_hwtimer_t *timer, rt_uint32_t state)
{
struct k230_timer *kd_timer = rt_container_of(timer, struct k230_timer, device);
uint8_t id = kd_timer->id;
if (state == 0)
{
k230_timer_stop(timer);
}
else
{
sysctl_clk_set_leaf_parent(kd_timer->clk, kd_timer->clk_src);
if (timer->freq == timer->info->minfreq)
sysctl_clk_set_leaf_div(kd_timer->clk_src, 1, 8);
if (timer->freq == timer->info->maxfreq)
sysctl_clk_set_leaf_div(kd_timer->clk_src, 1, 1);
if (timer->freq == 50*MHz)
sysctl_clk_set_leaf_div(kd_timer->clk_src, 1, 2);
if (timer->freq == 25*MHz)
sysctl_clk_set_leaf_div(kd_timer->clk_src, 1, 4);
}
}
static rt_err_t k230_timer_start(rt_hwtimer_t *timer, rt_uint32_t cnt, rt_hwtimer_mode_t mode)
{
struct k230_timer *kd_timer = rt_container_of(timer, struct k230_timer, device);
uint8_t id = kd_timer->id;
k230_timer_regs_t* reg = (k230_timer_regs_t *)kd_timer->base;
reg->channel[id].load_count = cnt;
reg->channel[id].control &= ~(TIMER_CR_INTERRUPT_MASK);
reg->channel[id].control |= (TIMER_CR_USER_MODE | TIMER_CR_ENABLE);
return RT_EOK;
}
static void k230_timer_stop(rt_hwtimer_t *timer)
{
struct k230_timer *kd_timer = rt_container_of(timer, struct k230_timer, device);
uint8_t id = kd_timer->id;
k230_timer_regs_t* reg = (k230_timer_regs_t *)kd_timer->base;
reg->channel[id].control &= ~TIMER_CR_ENABLE;
reg->channel[id].control |= TIMER_CR_INTERRUPT_MASK;
}
static rt_uint32_t k230_timer_get(rt_hwtimer_t *timer)
{
struct k230_timer *kd_timer = rt_container_of(timer, struct k230_timer, device);
uint8_t id = kd_timer->id;
k230_timer_regs_t* reg = (k230_timer_regs_t *)kd_timer->base;
return reg->channel[id].current_value;
}
static rt_err_t k230_timer_ctrl(rt_hwtimer_t *timer, rt_uint32_t cmd, void *arg)
{
struct k230_timer *kd_timer = rt_container_of(timer, struct k230_timer, device);
switch (cmd)
{
case HWTIMER_CTRL_FREQ_SET:
timer->freq = *((rt_uint32_t*)arg);
sysctl_clk_set_leaf_parent(kd_timer->clk, kd_timer->clk_src);
if (timer->freq == timer->info->minfreq)
sysctl_clk_set_leaf_div(kd_timer->clk_src, 1, 8);
if (timer->freq == timer->info->maxfreq)
sysctl_clk_set_leaf_div(kd_timer->clk_src, 1, 1);
if (timer->freq == 50*MHz)
sysctl_clk_set_leaf_div(kd_timer->clk_src, 1, 2);
if (timer->freq == 25*MHz)
sysctl_clk_set_leaf_div(kd_timer->clk_src, 1, 4);
break;
case HWTIMER_CTRL_STOP:
k230_timer_stop(timer);
break;
case HWTIMER_CTRL_INFO_GET:
if (arg == RT_NULL)
{
LOG_E("HWTIMER_CTRL_INFO_GET arg is NULL");
return -RT_ERROR;
}
*(struct rt_hwtimer_info *)arg = *(kd_timer->device.info);
break;
case HWTIMER_CTRL_MODE_SET:
if (arg == RT_NULL)
{
LOG_E("HWTIMER_CTRL_MODE_SET arg is NULL");
return -RT_ERROR;
}
timer->mode = *(rt_hwtimer_mode_t *)arg;
if (timer->mode != HWTIMER_MODE_ONESHOT)
{
LOG_E("mode is invalid/unsupported, only ONESHOT is supported");
return -RT_ERROR;
}
break;
default:
LOG_E("HWTIMER_CTRL cmd is invalid");
return -RT_ERROR;
}
return RT_EOK;
}
static int k230_timer_fops_open(struct dfs_file* fd)
{
rt_device_t device = (rt_device_t)fd->vnode->data;
return rt_device_open(device, RT_DEVICE_OFLAG_RDWR);
}
static int k230_timer_fops_close(struct dfs_file* fd)
{
rt_device_t device = (rt_device_t)fd->vnode->data;
return rt_device_close(device);
}
static const struct rt_hwtimer_info k230_timer_info =
{
100000000, /* the maximum count frequency can be set */
12500000, /* the minimum count frequency can be set */
0xFFFFFFFF, /* the maximum counter value */
HWTIMER_CNTMODE_DW, /* Increment or Decreasing count mode */
};
static const struct rt_hwtimer_ops k230_timer_ops =
{
.init = k230_timer_init,
.start = k230_timer_start,
.stop = k230_timer_stop,
.count_get = k230_timer_get,
.control = k230_timer_ctrl,
};
static const struct dfs_file_ops k230_timer_fops = {
k230_timer_fops_open,
k230_timer_fops_close,
};
void k230_hwtimer_isr(int vector, void *param)
{
uint32_t ret;
struct k230_timer *kd_timer = (struct k230_timer *)param;
rt_hwtimer_t *hwtimer = (rt_hwtimer_t *)&(kd_timer->device);
RT_ASSERT(kd_timer != RT_NULL && hwtimer != RT_NULL);
int id = kd_timer->id;
k230_timer_regs_t* reg = (k230_timer_regs_t *)kd_timer->base;
ret = (reg->channel[id].eoi);
rt_device_hwtimer_isr(hwtimer);
}
static struct k230_timer timer_devices[] =
{
#ifdef BSP_USING_TIMER0
{
.device.info = &k230_timer_info,
.device.ops = &k230_timer_ops,
.device.parent.fops = &k230_timer_fops,
.name = "hwtimer0",
.id = 0,
.clk = SYSCTL_CLK_TIMER0,
.clk_src = SYSCTL_CLK_TIMER0_SRC,
.irq_num = IRQN_TIMER_0_INTERRUPT
},
#endif /* BSP_USING_TIMER0 */
#ifdef BSP_USING_TIMER1
{
.device.info = &k230_timer_info,
.device.ops = &k230_timer_ops,
.device.parent.fops = &k230_timer_fops,
.name = "hwtimer1",
.id = 1,
.clk = SYSCTL_CLK_TIMER1,
.clk_src = SYSCTL_CLK_TIMER1_SRC,
.irq_num = IRQN_TIMER_1_INTERRUPT
},
#endif /* BSP_USING_TIMER1 */
#ifdef BSP_USING_TIMER2
{
.device.info = &k230_timer_info,
.device.ops = &k230_timer_ops,
.device.parent.fops = &k230_timer_fops,
.name = "hwtimer2",
.id = 2,
.clk = SYSCTL_CLK_TIMER2,
.clk_src = SYSCTL_CLK_TIMER2_SRC,
.irq_num = IRQN_TIMER_2_INTERRUPT
},
#endif /* BSP_USING_TIMER0 */
#ifdef BSP_USING_TIMER3
{
.device.info = &k230_timer_info,
.device.ops = &k230_timer_ops,
.device.parent.fops = &k230_timer_fops,
.name = "hwtimer3",
.id = 3,
.clk = SYSCTL_CLK_TIMER3,
.clk_src = SYSCTL_CLK_TIMER3_SRC,
.irq_num = IRQN_TIMER_3_INTERRUPT
},
#endif /* BSP_USING_TIMER3 */
#ifdef BSP_USING_TIMER4
{
.device.info = &k230_timer_info,
.device.ops = &k230_timer_ops,
.device.parent.fops = &k230_timer_fops,
.name = "hwtimer4",
.id = 4,
.clk = SYSCTL_CLK_TIMER4,
.clk_src = SYSCTL_CLK_TIMER4_SRC,
.irq_num = IRQN_TIMER_4_INTERRUPT
},
#endif /* BSP_USING_TIMER4 */
#ifdef BSP_USING_TIMER5
{
.device.info = &k230_timer_info,
.device.ops = &k230_timer_ops,
.device.parent.fops = &k230_timer_fops,
.name = "hwtimer5",
.id = 5,
.clk = SYSCTL_CLK_TIMER5,
.clk_src = SYSCTL_CLK_TIMER5_SRC,
.irq_num = IRQN_TIMER_5_INTERRUPT
},
#endif /* BSP_USING_TIMER5 */
#if !defined(BSP_USING_TIMER0) && \
!defined(BSP_USING_TIMER1) && \
!defined(BSP_USING_TIMER2) && \
!defined(BSP_USING_TIMER3) && \
!defined(BSP_USING_TIMER4) && \
!defined(BSP_USING_TIMER5)
#error "No hardware timer device enabled!"
#endif
};
int rt_hw_timer_init(void)
{
rt_uint8_t i, array_size;
array_size = sizeof(timer_devices) / sizeof(struct k230_timer);
if (array_size == 0)
{
LOG_E("No timer device defined!");
return -RT_ERROR;
}
volatile void* base = (void *)rt_ioremap((void *)HW_TIMER_BASE_ADDR, HW_TIMER_IO_SIZE);
for (i = 0; i < array_size; i++)
{
timer_devices[i].base = (rt_ubase_t)base;
if (rt_device_hwtimer_register(&timer_devices[i].device, timer_devices[i].name, RT_NULL) != RT_EOK)
{
LOG_E("%s register failed!", timer_devices[i].name);
return -RT_ERROR;
}
LOG_D("%s register OK!", timer_devices[i].name);
rt_hw_interrupt_install(timer_devices[i].irq_num,
k230_hwtimer_isr,
&timer_devices[i],
timer_devices[i].name);
rt_hw_interrupt_umask(timer_devices[i].irq_num);
}
return RT_EOK;
}
INIT_BOARD_EXPORT(rt_hw_timer_init);