rt-thread/components/drivers/serial/dev_serial_v2.c

2108 lines
63 KiB
C

/*
* Copyright (c) 2006-2024 RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-06-01 KyleChan first version
*/
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#define DBG_TAG "Serial"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#ifdef RT_SERIAL_BUF_STRATEGY_DROP
#define RT_SERIAL_FIFO_LOCK(spinlock) ((rt_base_t)0)
#define RT_SERIAL_FIFO_UNLOCK(spinlock, level) \
do { \
RT_UNUSED(spinlock); \
RT_UNUSED(level); \
} while (0)
#else
#define RT_SERIAL_FIFO_LOCK(spinlock) rt_spin_lock_irqsave(spinlock)
#define RT_SERIAL_FIFO_UNLOCK(spinlock, level) rt_spin_unlock_irqrestore(spinlock, level)
#endif /* RT_SERIAL_BUF_STRATEGY_DROP */
#ifdef RT_USING_POSIX_STDIO
#include <unistd.h>
#include <fcntl.h>
#include <poll.h>
#include <sys/ioctl.h>
#include <dfs_file.h>
#ifdef RT_USING_POSIX_TERMIOS
#include <termios.h>
#endif
#ifdef getc
#undef getc
#endif
#ifdef putc
#undef putc
#endif
RT_OBJECT_HOOKLIST_DEFINE(rt_hw_serial_rxind);
static rt_err_t serial_fops_rx_ind(rt_device_t dev, rt_size_t size)
{
rt_wqueue_wakeup(&dev->wait_queue, (void *)POLLIN);
RT_OBJECT_HOOKLIST_CALL(rt_hw_serial_rxind, (dev, size));
return RT_EOK;
}
/* fops for serial */
static int serial_fops_open(struct dfs_file *fd)
{
rt_err_t ret = 0;
rt_uint16_t flags = 0;
rt_device_t device;
device = (rt_device_t)fd->vnode->data;
RT_ASSERT(device != RT_NULL);
switch (fd->flags & O_ACCMODE)
{
case O_RDONLY:
LOG_D("fops open: O_RDONLY!");
flags = RT_DEVICE_FLAG_RDONLY;
break;
case O_WRONLY:
LOG_D("fops open: O_WRONLY!");
flags = RT_DEVICE_FLAG_WRONLY;
break;
case O_RDWR:
LOG_D("fops open: O_RDWR!");
flags = RT_DEVICE_FLAG_RDWR;
break;
default:
LOG_E("fops open: unknown mode - %d!", fd->flags & O_ACCMODE);
break;
}
if ((fd->flags & O_ACCMODE) != O_WRONLY)
rt_device_set_rx_indicate(device, serial_fops_rx_ind);
ret = rt_device_open(device, flags | RT_SERIAL_RX_BLOCKING | RT_SERIAL_TX_BLOCKING);
if (ret == RT_EOK) return 0;
return ret;
}
static int serial_fops_close(struct dfs_file *fd)
{
rt_device_t device;
device = (rt_device_t)fd->vnode->data;
rt_device_set_rx_indicate(device, RT_NULL);
rt_device_close(device);
return 0;
}
static int serial_fops_ioctl(struct dfs_file *fd, int cmd, void *args)
{
rt_device_t device;
int flags = (int)(rt_base_t)args;
int mask = O_NONBLOCK | O_APPEND;
device = (rt_device_t)fd->vnode->data;
switch (cmd)
{
case FIONREAD:
break;
case FIONWRITE:
break;
case F_SETFL:
flags &= mask;
fd->flags &= ~mask;
fd->flags |= flags;
break;
}
return rt_device_control(device, cmd, args);
}
#ifdef RT_USING_DFS_V2
static ssize_t serial_fops_read(struct dfs_file *fd, void *buf, size_t count, off_t *pos)
#else
static ssize_t serial_fops_read(struct dfs_file *fd, void *buf, size_t count)
#endif
{
ssize_t size = 0;
rt_device_t device;
rt_int32_t rx_timout;
if (count == 0) return 0;
RT_ASSERT(fd != RT_NULL && buf != RT_NULL);
device = (rt_device_t)fd->vnode->data;
RT_ASSERT(device != RT_NULL);
/* nonblock mode */
if (fd->flags & O_NONBLOCK)
{
rx_timout = RT_WAITING_NO;
rt_device_control(device, RT_SERIAL_CTRL_SET_RX_TIMEOUT, (void *)&rx_timout);
size = rt_device_read(device, -1, buf, count);
if (size <= 0)
{
size = -1;
rt_set_errno(EAGAIN);
}
}
else
{
rx_timout = RT_WAITING_FOREVER;
rt_device_control(device, RT_SERIAL_CTRL_SET_RX_TIMEOUT, (void *)&rx_timout);
size = rt_device_read(device, -1, buf, count);
}
return size;
}
#ifdef RT_USING_DFS_V2
static ssize_t serial_fops_write(struct dfs_file *fd, const void *buf, size_t count, off_t *pos)
#else
static ssize_t serial_fops_write(struct dfs_file *fd, const void *buf, size_t count)
#endif
{
ssize_t size = 0;
rt_device_t device;
rt_int32_t tx_timeout;
device = (rt_device_t)fd->vnode->data;
if (fd->flags & O_NONBLOCK)
{
tx_timeout = RT_WAITING_NO;
rt_device_control(device, RT_SERIAL_CTRL_SET_TX_TIMEOUT, (void *)&tx_timeout);
size = rt_device_write(device, -1, buf, count);
if (size <= 0)
{
size = -1;
rt_set_errno(EAGAIN);
}
}
else
{
tx_timeout = RT_WAITING_FOREVER;
rt_device_control(device, RT_SERIAL_CTRL_SET_TX_TIMEOUT, (void *)&tx_timeout);
size = rt_device_write(device, -1, buf, count);
}
return size;
}
static int serial_fops_flush(struct dfs_file *fd)
{
rt_device_t device;
struct rt_serial_device *serial;
device = (rt_device_t)fd->vnode->data;
RT_ASSERT(device != RT_NULL);
serial = (struct rt_serial_device *)device;
rt_device_control(device, RT_SERIAL_CTRL_TX_FLUSH, (void *)RT_NULL);
rt_device_control(device, RT_SERIAL_CTRL_RX_FLUSH, (void *)RT_NULL);
return 0;
}
static int serial_fops_poll(struct dfs_file *fd, struct rt_pollreq *req)
{
int mask = 0;
int flags = 0;
rt_device_t device;
struct rt_serial_device *serial;
device = (rt_device_t)fd->vnode->data;
RT_ASSERT(device != RT_NULL);
serial = (struct rt_serial_device *)device;
/* only support POLLIN */
flags = fd->flags & O_ACCMODE;
if (flags == O_RDONLY || flags == O_RDWR)
{
rt_base_t level;
struct rt_serial_rx_fifo *rx_fifo;
rt_poll_add(&device->wait_queue, req);
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
level = RT_SERIAL_FIFO_LOCK(&serial->spinlock);
if (rt_ringbuffer_data_len(&rx_fifo->rb))
mask |= POLLIN;
RT_SERIAL_FIFO_UNLOCK(&serial->spinlock, level);
}
/* mask|=POLLOUT; */
return mask;
}
const static struct dfs_file_ops _serial_fops =
{
.open = serial_fops_open,
.close = serial_fops_close,
.ioctl = serial_fops_ioctl,
.read = serial_fops_read,
.write = serial_fops_write,
.flush = serial_fops_flush,
.poll = serial_fops_poll,
};
#endif /* RT_USING_POSIX_STDIO */
static rt_ssize_t rt_serial_get_linear_buffer(struct rt_ringbuffer *rb,
rt_uint8_t **ptr)
{
rt_size_t size;
RT_ASSERT(rb != RT_NULL);
/* whether has enough data */
size = rt_ringbuffer_data_len(rb);
/* no data */
if (size == 0)
return 0;
*ptr = &rb->buffer_ptr[rb->read_index];
if (rb->buffer_size - rb->read_index > size)
{
return size;
}
return rb->buffer_size - rb->read_index;
}
#ifdef RT_SERIAL_USING_DMA
static void rt_serial_update_read_index(struct rt_ringbuffer *rb,
rt_uint16_t length)
{
rt_size_t size;
RT_ASSERT(rb != RT_NULL);
/* whether has enough data */
size = rt_ringbuffer_data_len(rb);
/* no data */
if (size == 0)
return;
/* less data */
if (size < length)
length = size;
if (rb->buffer_size - rb->read_index > length)
{
rb->read_index += length;
return;
}
/* we are going into the other side of the mirror */
rb->read_mirror = ~rb->read_mirror;
rb->read_index = length - (rb->buffer_size - rb->read_index);
return;
}
static void rt_serial_update_write_index(struct rt_ringbuffer *rb,
rt_uint16_t length)
{
rt_uint16_t space_length;
RT_ASSERT(rb != RT_NULL);
/* whether has enough space */
space_length = rt_ringbuffer_space_len(rb);
if (length > rb->buffer_size)
{
length = rb->buffer_size;
#if !defined(RT_USING_ULOG) || defined(ULOG_USING_ISR_LOG)
LOG_W("The serial buffer (len %d) is overflow.", rb->buffer_size);
#endif
}
if (rb->buffer_size - rb->write_index > length)
{
/* this should not cause overflow because there is enough space for
* length of data in current mirror */
rb->write_index += length;
if (length > space_length)
rb->read_index = rb->write_index;
return;
}
/* we are going into the other side of the mirror */
rb->write_mirror = ~rb->write_mirror;
rb->write_index = length - (rb->buffer_size - rb->write_index);
if (length > space_length)
{
if (rb->write_index <= rb->read_index)
rb->read_mirror = ~rb->read_mirror;
rb->read_index = rb->write_index;
}
return;
}
#endif /* RT_SERIAL_USING_DMA */
/**
* @brief Serial polling receive data routine, This function will receive data
* in a continuous loop by one by one byte.
* @param dev The pointer of device driver structure
* @param pos Empty parameter.
* @param buffer Receive data buffer.
* @param size Receive data buffer length.
* @return Return the final length of data received.
*/
rt_ssize_t _serial_poll_rx(struct rt_device *dev,
rt_off_t pos,
void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
rt_size_t getc_size;
int getc_element; /* Gets one byte of data received */
rt_uint8_t *getc_buffer; /* Pointer to the receive data buffer */
if (size == 0) return 0;
RT_ASSERT(dev != RT_NULL && buffer != RT_NULL);
serial = (struct rt_serial_device *)dev;
getc_buffer = (rt_uint8_t *)buffer;
getc_size = size;
while (size)
{
getc_element = serial->ops->getc(serial);
if (getc_element == -1) break;
*getc_buffer = getc_element;
++getc_buffer;
--size;
if (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM)
{
/* If open_flag satisfies RT_DEVICE_FLAG_STREAM
* and the received character is '\n', exit the loop directly */
if (getc_element == '\n') break;
}
}
return getc_size - size;
}
/**
* @brief Serial polling transmit data routines, This function will transmit
* data in a continuous loop by one by one byte.
* @param dev The pointer of device driver structure
* @param pos Empty parameter.
* @param buffer Transmit data buffer.
* @param size Transmit data buffer length.
* @return Return the final length of data transmit.
*/
rt_ssize_t _serial_poll_tx(struct rt_device *dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
rt_size_t putc_size;
rt_uint8_t *putc_buffer; /* Pointer to the transmit data buffer */
if (size == 0) return 0;
RT_ASSERT(dev != RT_NULL && buffer != RT_NULL);
serial = (struct rt_serial_device *)dev;
putc_buffer = (rt_uint8_t *)buffer;
putc_size = size;
while (size)
{
if (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM)
{
/* If open_flag satisfies RT_DEVICE_FLAG_STREAM and the received character is '\n',
* inserts '\r' character before '\n' character for the effect of carriage return newline */
if (*putc_buffer == '\n')
serial->ops->putc(serial, '\r');
}
serial->ops->putc(serial, *putc_buffer);
++putc_buffer;
--size;
}
return putc_size - size;
}
/**
* @brief Serial receive data routines, This function will receive
* data by using fifo
*
* @note In blocking mode, the function will wait until the specified amount of data is received or until a timeout occurs.
* In non-blocking mode, the function will immediately attempt to retrieve as much data as possible from the ring buffer and return.
*
* @param dev The pointer of device driver structure
* @param pos Empty parameter.
* @param buffer Receive data buffer.
* @param size Receive data buffer length.
* @return Returns the actual length of data received. If a timeout occurs in blocking mode, it returns -RT_ETIMEOUT.
*/
static rt_ssize_t _serial_fifo_rx(struct rt_device *dev,
rt_off_t pos,
void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
struct rt_serial_rx_fifo *rx_fifo;
rt_base_t level;
rt_size_t recv_size = 0;
if (size == 0) return 0;
RT_ASSERT(dev != RT_NULL && buffer != RT_NULL);
serial = (struct rt_serial_device *)dev;
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
if (dev->open_flag & RT_SERIAL_RX_BLOCKING)
{
rt_size_t data_len;
rt_tick_t now_tick;
rt_size_t rx_bufsz_third = serial->config.rx_bufsz / 2;
rt_int32_t base_rx_timeout = rt_atomic_load(&rx_fifo->rx_timeout);
rt_int32_t rx_timeout = base_rx_timeout;
rt_tick_t begin_tick = rt_tick_get();
while (1)
{
if (rx_timeout != RT_WAITING_NO)
{
level = rt_spin_lock_irqsave(&serial->spinlock);
data_len = rt_ringbuffer_data_len(&rx_fifo->rb);
if (data_len < size - recv_size)
{
if (size - (recv_size + data_len) >= rx_bufsz_third)
{
rx_fifo->rx_cpt_index = rx_bufsz_third;
}
else
{
rx_fifo->rx_cpt_index = size - (recv_size + data_len);
}
rt_completion_wait(&rx_fifo->rx_cpt, 0);
}
rt_spin_unlock_irqrestore(&serial->spinlock, level);
}
level = RT_SERIAL_FIFO_LOCK(&serial->spinlock);
recv_size += rt_ringbuffer_get(&rx_fifo->rb, (rt_uint8_t *)buffer + recv_size, size - recv_size);
RT_SERIAL_FIFO_UNLOCK(&serial->spinlock, level);
if (recv_size == size || rx_timeout == RT_WAITING_NO)
{
break;
}
rt_completion_wait(&rx_fifo->rx_cpt, rx_timeout);
if (rx_timeout != RT_WAITING_FOREVER)
{
now_tick = rt_tick_get();
if (now_tick - begin_tick >= base_rx_timeout)
{
return -RT_ETIMEOUT;
}
else
{
if (now_tick > begin_tick)
rx_timeout = base_rx_timeout - (now_tick - begin_tick);
else
rx_timeout = begin_tick + base_rx_timeout - now_tick + 1;
}
}
}
}
else if (dev->open_flag & RT_SERIAL_RX_NON_BLOCKING)
{
/* When open_flag is RT_SERIAL_RX_NON_BLOCKING,
* the data is retrieved directly from the ringbuffer and returned */
level = RT_SERIAL_FIFO_LOCK(&serial->spinlock);
recv_size = rt_ringbuffer_get(&rx_fifo->rb, buffer, size);
RT_SERIAL_FIFO_UNLOCK(&serial->spinlock, level);
}
return recv_size;
}
/**
* @brief Serial transmit data routines, This function will transmit
* data by using blocking_nbuf.
* @param dev The pointer of device driver structure
* @param pos Empty parameter.
* @param buffer Transmit data buffer.
* @param size Transmit data buffer length.
* @return Returns the actual length of data transmitted. If a timeout occurs, it returns -RT_ETIMEOUT.
*/
static rt_ssize_t _serial_fifo_tx_blocking_nbuf(struct rt_device *dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
struct rt_serial_tx_fifo *tx_fifo;
rt_ssize_t send_size;
rt_err_t ret;
if (size == 0) return 0;
RT_ASSERT(dev != RT_NULL && buffer != RT_NULL);
serial = (struct rt_serial_device *)dev;
tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
if (rt_thread_self() == RT_NULL || (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM))
{
/* using poll tx when the scheduler not startup or in stream mode */
return _serial_poll_tx(dev, pos, buffer, size);
}
/* When serial transmit in tx_blocking mode,
* if the activated mode is RT_TRUE, it will return directly */
if (rt_atomic_flag_test_and_set(&tx_fifo->activated))
{
return 0;
}
/* clear tx_cpt flag */
rt_completion_wait(&tx_fifo->tx_cpt, 0);
/* Call the transmit interface for transmission */
send_size = serial->ops->transmit(serial,
(rt_uint8_t *)buffer,
size,
RT_SERIAL_TX_BLOCKING);
if (rt_atomic_load(&tx_fifo->tx_timeout) == RT_WAITING_NO)
{
return send_size;
}
/* Waiting for the transmission to complete */
ret = rt_completion_wait(&tx_fifo->tx_cpt, rt_atomic_load(&tx_fifo->tx_timeout));
if (ret != RT_EOK)
{
if (ret == -RT_ETIMEOUT)
{
return ret;
}
else
{
return 0;
}
}
/* Inactive tx mode flag */
rt_atomic_flag_clear(&tx_fifo->activated);
return send_size;
}
/**
* @brief Serial transmit data routines, This function will transmit
* data by using blocking_buf.
* @param dev The pointer of device driver structure
* @param pos Empty parameter.
* @param buffer Transmit data buffer.
* @param size Transmit data buffer length.
* @return Returns the final length of data transmitted. If not all data can be sent within the timeout period, returns -RT_ETIMEOUT.
*/
static rt_ssize_t _serial_fifo_tx_blocking_buf(struct rt_device *dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
struct rt_serial_tx_fifo *tx_fifo;
rt_base_t level;
if (size == 0) return 0;
RT_ASSERT(dev != RT_NULL && buffer != RT_NULL);
serial = (struct rt_serial_device *)dev;
tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
if (rt_thread_self() == RT_NULL || (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM))
{
/* using poll tx when the scheduler not startup or in stream mode */
return _serial_poll_tx(dev, pos, buffer, size);
}
/* When serial transmit in tx_blocking mode,
* if the activated mode is RT_TRUE, it will return directly */
if (rt_atomic_flag_test_and_set(&tx_fifo->activated))
{
return 0;
}
rt_tick_t now_tick;
rt_int32_t base_tx_timeout = rt_atomic_load(&tx_fifo->tx_timeout);
rt_int32_t tx_timeout = base_tx_timeout;
rt_tick_t begin_tick = rt_tick_get();
rt_size_t send_size = 0;
while (send_size != size)
{
/* Copy one piece of data into the ringbuffer at a time
* until the length of the data is equal to size */
level = RT_SERIAL_FIFO_LOCK(&serial->spinlock);
tx_fifo->put_size = rt_ringbuffer_put(&tx_fifo->rb,
(rt_uint8_t *)buffer + send_size,
size - send_size);
RT_SERIAL_FIFO_UNLOCK(&serial->spinlock, level);
/* clear tx_cpt flag */
rt_completion_wait(&tx_fifo->tx_cpt, 0);
/* Call the transmit interface for transmission again */
/* Note that in interrupt mode, buffer and tx_fifo->put_size
* are inactive parameters */
serial->ops->transmit(serial,
(rt_uint8_t *)buffer + send_size,
tx_fifo->put_size,
RT_SERIAL_TX_BLOCKING);
send_size += tx_fifo->put_size;
if (tx_timeout == RT_WAITING_NO)
{
break;
}
/* Waiting for the transmission to complete */
rt_completion_wait(&tx_fifo->tx_cpt, tx_timeout);
if (tx_timeout != RT_WAITING_FOREVER)
{
now_tick = rt_tick_get();
if (now_tick - begin_tick >= base_tx_timeout)
{
return -RT_ETIMEOUT;
}
else
{
if (now_tick > begin_tick)
tx_timeout = base_tx_timeout - (now_tick - begin_tick);
else
tx_timeout = begin_tick + base_tx_timeout - now_tick + 1;
}
}
}
/* Finally Inactivate the tx->fifo */
rt_atomic_flag_clear(&tx_fifo->activated);
return send_size;
}
/**
* @brief Serial transmit data routines, This function will transmit
* data by using nonblocking.
* @param dev The pointer of device driver structure
* @param pos Empty parameter.
* @param buffer Transmit data buffer.
* @param size Transmit data buffer length.
* @return Return the final length of data transmit.
*/
static rt_ssize_t _serial_fifo_tx_nonblocking(struct rt_device *dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
struct rt_serial_tx_fifo *tx_fifo;
rt_uint8_t *put_ptr;
rt_base_t level;
rt_size_t send_size = 0;
if (size == 0) return 0;
RT_ASSERT(dev != RT_NULL && buffer != RT_NULL);
serial = (struct rt_serial_device *)dev;
tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
/* When serial transmit in tx_non_blocking mode, if the activated mode is RT_FALSE,
* start copying data into the ringbuffer */
if (!rt_atomic_flag_test_and_set(&tx_fifo->activated))
{
level = RT_SERIAL_FIFO_LOCK(&serial->spinlock);
/* Copying data into the ringbuffer */
send_size = rt_ringbuffer_put(&tx_fifo->rb, buffer, size);
/* Get the linear length buffer from ringbuffer */
tx_fifo->put_size = rt_serial_get_linear_buffer(&tx_fifo->rb, &put_ptr);
RT_SERIAL_FIFO_UNLOCK(&serial->spinlock, level);
/* clear tx_cpt flag */
rt_completion_wait(&tx_fifo->tx_cpt, 0);
/* Call the transmit interface for transmission again */
/* Note that in interrupt mode, put_ptr and tx_fifo->put_size
* are inactive parameters */
serial->ops->transmit(serial,
put_ptr,
tx_fifo->put_size,
RT_SERIAL_TX_NON_BLOCKING);
/* In tx_nonblocking mode, there is no need to call rt_completion_wait() APIs to wait
* for the rt_current_thread to resume */
return send_size;
}
/* If the activated mode is RT_TRUE, it means that serial device is transmitting,
* where only the data in the ringbuffer and there is no need to call the transmit() API.
* Note that this part of the code requires disable interrupts
* to prevent multi thread reentrant */
level = RT_SERIAL_FIFO_LOCK(&serial->spinlock);
/* Copying data into the ringbuffer */
send_size = rt_ringbuffer_put(&tx_fifo->rb, buffer, size);
RT_SERIAL_FIFO_UNLOCK(&serial->spinlock, level);
return send_size;
}
/**
* @brief Enable serial transmit mode.
* @param dev The pointer of device driver structure
* @param rx_oflag The flag of that the serial port opens.
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_tx_enable(struct rt_device *dev,
rt_uint16_t tx_oflag)
{
struct rt_serial_device *serial;
struct rt_serial_tx_fifo *tx_fifo = RT_NULL;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
if (serial->config.tx_bufsz == 0)
{
/* Cannot use RT_SERIAL_TX_NON_BLOCKING when tx_bufsz is 0 */
if (tx_oflag == RT_SERIAL_TX_NON_BLOCKING)
{
LOG_E("(%s) serial device with misconfigure: tx_bufsz = 0",
dev->parent.name);
return -RT_EINVAL;
}
#ifndef RT_USING_DEVICE_OPS
dev->write = _serial_poll_tx;
#endif
dev->open_flag |= RT_SERIAL_TX_BLOCKING;
return RT_EOK;
}
/* Limits the minimum value of tx_bufsz */
if (serial->config.tx_bufsz < RT_SERIAL_TX_MINBUFSZ)
serial->config.tx_bufsz = RT_SERIAL_TX_MINBUFSZ;
if (tx_oflag == RT_SERIAL_TX_BLOCKING)
{
/* When using RT_SERIAL_TX_BLOCKING, it is necessary to determine
* whether serial device needs to use buffer */
rt_err_t optmode; /* The operating mode used by serial device */
/* Call the Control() API to get the operating mode */
optmode = serial->ops->control(serial,
RT_DEVICE_CHECK_OPTMODE,
(void *)RT_DEVICE_FLAG_TX_BLOCKING);
if (optmode == RT_SERIAL_TX_BLOCKING_BUFFER)
{
/* If use RT_SERIAL_TX_BLOCKING_BUFFER, the ringbuffer is initialized */
tx_fifo = (struct rt_serial_tx_fifo *)rt_malloc(sizeof(struct rt_serial_tx_fifo) + serial->config.tx_bufsz);
RT_ASSERT(tx_fifo != RT_NULL);
rt_memset(tx_fifo, RT_NULL, sizeof(struct rt_serial_tx_fifo) + serial->config.tx_bufsz);
rt_ringbuffer_init(&tx_fifo->rb,
(rt_uint8_t *)tx_fifo + sizeof(struct rt_serial_tx_fifo),
serial->config.tx_bufsz);
serial->serial_tx = tx_fifo;
#ifndef RT_USING_DEVICE_OPS
dev->write = _serial_fifo_tx_blocking_buf;
#endif
}
else
{
/* If not use RT_SERIAL_TX_BLOCKING_BUFFER,
* the control() API is called to configure the serial device */
tx_fifo = (struct rt_serial_tx_fifo *)rt_malloc(sizeof(struct rt_serial_tx_fifo));
RT_ASSERT(tx_fifo != RT_NULL);
rt_memset(tx_fifo, RT_NULL, sizeof(struct rt_serial_tx_fifo));
/* Init rb.buffer_ptr to RT_NULL, in rt_serial_write() need check it
* otherwise buffer_ptr maybe a random value, as rt_malloc not init memory */
serial->serial_tx = tx_fifo;
#ifndef RT_USING_DEVICE_OPS
dev->write = _serial_fifo_tx_blocking_nbuf;
#endif
/* Call the control() API to configure the serial device by RT_SERIAL_TX_BLOCKING*/
serial->ops->control(serial,
RT_DEVICE_CTRL_CONFIG,
(void *)RT_SERIAL_TX_BLOCKING);
}
rt_atomic_flag_clear(&tx_fifo->activated);
tx_fifo->put_size = 0;
rt_atomic_store(&tx_fifo->tx_timeout, RT_WAITING_FOREVER);
rt_completion_init(&tx_fifo->tx_cpt);
dev->open_flag |= RT_SERIAL_TX_BLOCKING;
return RT_EOK;
}
/* When using RT_SERIAL_TX_NON_BLOCKING, ringbuffer needs to be initialized,
* and initialize the tx_fifo->activated value is RT_FALSE.
*/
tx_fifo = (struct rt_serial_tx_fifo *)rt_malloc(sizeof(struct rt_serial_tx_fifo) + serial->config.tx_bufsz);
RT_ASSERT(tx_fifo != RT_NULL);
rt_memset(tx_fifo, RT_NULL, sizeof(struct rt_serial_tx_fifo) + serial->config.tx_bufsz);
rt_ringbuffer_init(&tx_fifo->rb,
(rt_uint8_t *)tx_fifo + sizeof(struct rt_serial_tx_fifo),
serial->config.tx_bufsz);
serial->serial_tx = tx_fifo;
rt_atomic_flag_clear(&tx_fifo->activated);
tx_fifo->put_size = 0;
#ifndef RT_USING_DEVICE_OPS
dev->write = _serial_fifo_tx_nonblocking;
#endif
rt_completion_init(&tx_fifo->tx_cpt);
dev->open_flag |= RT_SERIAL_TX_NON_BLOCKING;
/* Call the control() API to configure the serial device by RT_SERIAL_TX_NON_BLOCKING*/
serial->ops->control(serial,
RT_DEVICE_CTRL_CONFIG,
(void *)RT_SERIAL_TX_NON_BLOCKING);
return RT_EOK;
}
/**
* @brief Enable serial receive mode.
* @param dev The pointer of device driver structure
* @param rx_oflag The flag of that the serial port opens.
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_rx_enable(struct rt_device *dev,
rt_uint16_t rx_oflag)
{
struct rt_serial_device *serial;
struct rt_serial_rx_fifo *rx_fifo = RT_NULL;
rt_size_t rx_fifo_size = 0;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
if (serial->config.rx_bufsz == 0)
{
/* Cannot use RT_SERIAL_RX_NON_BLOCKING when rx_bufsz is 0 */
if (rx_oflag == RT_SERIAL_RX_NON_BLOCKING)
{
LOG_E("(%s) serial device with misconfigure: rx_bufsz = 0",
dev->parent.name);
return -RT_EINVAL;
}
#ifndef RT_USING_DEVICE_OPS
dev->read = _serial_poll_rx;
#endif
dev->open_flag |= RT_SERIAL_RX_BLOCKING;
return RT_EOK;
}
/* Limits the minimum value of rx_bufsz */
if (serial->config.rx_bufsz < RT_SERIAL_RX_MINBUFSZ)
serial->config.rx_bufsz = RT_SERIAL_RX_MINBUFSZ;
#ifdef RT_SERIAL_USING_DMA
if (serial->config.dma_ping_bufsz < RT_SERIAL_RX_MINBUFSZ / 2)
serial->config.dma_ping_bufsz = RT_SERIAL_RX_MINBUFSZ / 2;
rx_fifo_size = sizeof(struct rt_serial_rx_fifo) + serial->config.rx_bufsz + serial->config.dma_ping_bufsz;
#else
rx_fifo_size = sizeof(struct rt_serial_rx_fifo) + serial->config.rx_bufsz;
#endif
rx_fifo = (struct rt_serial_rx_fifo *)rt_malloc(rx_fifo_size);
RT_ASSERT(rx_fifo != RT_NULL);
rt_memset(rx_fifo, RT_NULL, rx_fifo_size);
rt_ringbuffer_init(&rx_fifo->rb,
(rt_uint8_t *)rx_fifo + sizeof(struct rt_serial_rx_fifo),
serial->config.rx_bufsz);
#ifdef RT_SERIAL_USING_DMA
rt_ringbuffer_init(&rx_fifo->dma_ping_rb,
(rt_uint8_t *)rx_fifo + sizeof(struct rt_serial_rx_fifo) + serial->config.rx_bufsz,
serial->config.dma_ping_bufsz);
#endif
serial->serial_rx = rx_fifo;
#ifndef RT_USING_DEVICE_OPS
dev->read = _serial_fifo_rx;
#endif
if (rx_oflag == RT_SERIAL_RX_NON_BLOCKING)
{
dev->open_flag |= RT_SERIAL_RX_NON_BLOCKING;
/* Call the control() API to configure the serial device by RT_SERIAL_RX_NON_BLOCKING*/
serial->ops->control(serial,
RT_DEVICE_CTRL_CONFIG,
(void *)RT_SERIAL_RX_NON_BLOCKING);
return RT_EOK;
}
/* When using RT_SERIAL_RX_BLOCKING, rt_completion_init() and rx_cpt_index are initialized */
rx_fifo->rx_cpt_index = 0;
rt_atomic_store(&rx_fifo->rx_timeout, RT_WAITING_FOREVER);
rt_completion_init(&rx_fifo->rx_cpt);
dev->open_flag |= RT_SERIAL_RX_BLOCKING;
/* Call the control() API to configure the serial device by RT_SERIAL_RX_BLOCKING*/
serial->ops->control(serial,
RT_DEVICE_CTRL_CONFIG,
(void *)RT_SERIAL_RX_BLOCKING);
return RT_EOK;
}
/**
* @brief Disable serial receive mode.
* @param dev The pointer of device driver structure
* @param rx_oflag The flag of that the serial port opens.
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_rx_disable(struct rt_device *dev,
rt_uint16_t rx_oflag)
{
struct rt_serial_device *serial;
struct rt_serial_rx_fifo *rx_fifo;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
#ifndef RT_USING_DEVICE_OPS
dev->read = RT_NULL;
#endif
if (serial->serial_rx == RT_NULL) return RT_EOK;
if (rx_oflag == RT_SERIAL_RX_NON_BLOCKING)
{
dev->open_flag &= ~RT_SERIAL_RX_NON_BLOCKING;
serial->ops->control(serial,
RT_DEVICE_CTRL_CLR_INT,
(void *)RT_SERIAL_RX_NON_BLOCKING);
}
else
{
dev->open_flag &= ~RT_SERIAL_RX_BLOCKING;
serial->ops->control(serial,
RT_DEVICE_CTRL_CLR_INT,
(void *)RT_SERIAL_RX_BLOCKING);
}
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_free(rx_fifo);
serial->serial_rx = RT_NULL;
return RT_EOK;
}
/**
* @brief Disable serial tranmit mode.
* @param dev The pointer of device driver structure
* @param rx_oflag The flag of that the serial port opens.
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_tx_disable(struct rt_device *dev,
rt_uint16_t tx_oflag)
{
struct rt_serial_device *serial;
struct rt_serial_tx_fifo *tx_fifo;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
#ifndef RT_USING_DEVICE_OPS
dev->write = RT_NULL;
#endif
if (serial->serial_tx == RT_NULL) return RT_EOK;
tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
if (tx_oflag == RT_SERIAL_TX_NON_BLOCKING)
{
dev->open_flag &= ~RT_SERIAL_TX_NON_BLOCKING;
serial->ops->control(serial,
RT_DEVICE_CTRL_CLR_INT,
(void *)RT_SERIAL_TX_NON_BLOCKING);
}
else
{
rt_completion_done(&tx_fifo->tx_cpt);
dev->open_flag &= ~RT_SERIAL_TX_BLOCKING;
serial->ops->control(serial,
RT_DEVICE_CTRL_CLR_INT,
(void *)RT_SERIAL_TX_BLOCKING);
}
rt_free(tx_fifo);
serial->serial_tx = RT_NULL;
return RT_EOK;
}
/**
* @brief Initialize the serial device.
* @param dev The pointer of device driver structure
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_init(struct rt_device *dev)
{
rt_err_t result = RT_EOK;
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
RT_ASSERT(serial->ops->transmit != RT_NULL);
/* initialize rx/tx */
serial->serial_rx = RT_NULL;
serial->serial_tx = RT_NULL;
/* apply configuration */
if (serial->ops->configure)
result = serial->ops->configure(serial, &serial->config);
return result;
}
/**
* @brief Open the serial device.
* @param dev The pointer of device driver structure
* @param oflag The flag of that the serial port opens.
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag)
{
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
/* Check that the device has been turned on */
if ((dev->open_flag) & (15 << 12))
{
LOG_D("(%s) serial device has already been opened, it will run in its original configuration", dev->parent.name);
return RT_EOK;
}
LOG_D("open serial device: 0x%08x with open flag: 0x%04x",
dev, oflag);
/* By default, the receive mode of a serial devide is RT_SERIAL_RX_NON_BLOCKING */
if ((oflag & RT_SERIAL_RX_BLOCKING) == RT_SERIAL_RX_BLOCKING)
dev->open_flag |= RT_SERIAL_RX_BLOCKING;
else
dev->open_flag |= RT_SERIAL_RX_NON_BLOCKING;
/* By default, the transmit mode of a serial devide is RT_SERIAL_TX_BLOCKING */
if ((oflag & RT_SERIAL_TX_NON_BLOCKING) == RT_SERIAL_TX_NON_BLOCKING)
dev->open_flag |= RT_SERIAL_TX_NON_BLOCKING;
else
dev->open_flag |= RT_SERIAL_TX_BLOCKING;
/* set steam flag */
if ((oflag & RT_DEVICE_FLAG_STREAM) || (dev->open_flag & RT_DEVICE_FLAG_STREAM))
dev->open_flag |= RT_DEVICE_FLAG_STREAM;
/* initialize the Rx structure according to open flag */
if (serial->serial_rx == RT_NULL)
rt_serial_rx_enable(dev, dev->open_flag & (RT_SERIAL_RX_BLOCKING | RT_SERIAL_RX_NON_BLOCKING));
/* initialize the Tx structure according to open flag */
if (serial->serial_tx == RT_NULL)
rt_serial_tx_enable(dev, dev->open_flag & (RT_SERIAL_TX_BLOCKING | RT_SERIAL_TX_NON_BLOCKING));
return RT_EOK;
}
/**
* @brief Close the serial device.
* @param dev The pointer of device driver structure
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_close(struct rt_device *dev)
{
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
/* this device has more reference count */
if (dev->ref_count > 1) return -RT_ERROR;
/* Disable serial receive mode. */
rt_serial_rx_disable(dev, dev->open_flag & (RT_SERIAL_RX_BLOCKING | RT_SERIAL_RX_NON_BLOCKING));
/* Disable serial tranmit mode. */
rt_serial_tx_disable(dev, dev->open_flag & (RT_SERIAL_TX_BLOCKING | RT_SERIAL_TX_NON_BLOCKING));
/* Clear the callback function */
serial->parent.rx_indicate = RT_NULL;
serial->parent.tx_complete = RT_NULL;
rt_memset(&serial->rx_notify, RT_NULL, sizeof(struct rt_device_notify));
/* Call the control() API to close the serial device */
serial->ops->control(serial, RT_DEVICE_CTRL_CLOSE, RT_NULL);
dev->flag &= ~RT_DEVICE_FLAG_ACTIVATED;
return RT_EOK;
}
static void _serial_rx_flush(struct rt_serial_device *serial)
{
rt_base_t level;
struct rt_serial_rx_fifo *rx_fifo;
RT_ASSERT(serial != RT_NULL);
if (serial->config.rx_bufsz == 0)
{
while (serial->ops->getc(serial) != -1)
{
}
}
else
{
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
level = rt_spin_lock_irqsave(&serial->spinlock);
rt_completion_wait(&rx_fifo->rx_cpt, 0);
rt_ringbuffer_reset(&rx_fifo->rb);
rx_fifo->rx_cpt_index = 0;
#ifdef RT_SERIAL_USING_DMA
rt_serial_update_read_index(&rx_fifo->dma_ping_rb, rt_ringbuffer_get_size(&rx_fifo->dma_ping_rb));
#endif
rt_spin_unlock_irqrestore(&serial->spinlock, level);
}
}
static void _serial_tx_flush(struct rt_serial_device *serial)
{
struct rt_serial_tx_fifo *tx_fifo;
RT_ASSERT(serial != RT_NULL);
if (serial->config.tx_bufsz != 0)
{
tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
if (rt_atomic_load(&tx_fifo->activated))
{
rt_completion_wait(&tx_fifo->tx_cpt, RT_WAITING_FOREVER);
return;
}
}
}
static rt_err_t _serial_get_unread_bytes_count(struct rt_serial_device *serial, rt_ssize_t *unread_bytes)
{
rt_base_t level;
struct rt_serial_rx_fifo *rx_fifo;
RT_ASSERT(serial != RT_NULL);
if (serial->config.rx_bufsz == 0)
{
LOG_W("get unread bytes count not support in poll mode.");
*unread_bytes = -1;
return -RT_EPERM;
}
else
{
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
level = RT_SERIAL_FIFO_LOCK(&serial->spinlock);
*unread_bytes = rt_ringbuffer_data_len(&rx_fifo->rb);
RT_SERIAL_FIFO_UNLOCK(&serial->spinlock, level);
}
return RT_EOK;
}
#ifdef RT_USING_POSIX_TERMIOS
struct speed_baudrate_item
{
speed_t speed;
int baudrate;
};
const static struct speed_baudrate_item _tbl[] =
{
{ B2400, BAUD_RATE_2400},
{ B4800, BAUD_RATE_4800},
{ B9600, BAUD_RATE_9600},
{ B19200, BAUD_RATE_19200},
{ B38400, BAUD_RATE_38400},
{ B57600, BAUD_RATE_57600},
{ B115200, BAUD_RATE_115200},
{ B230400, BAUD_RATE_230400},
{ B460800, BAUD_RATE_460800},
{ B500000, BAUD_RATE_500000},
{ B921600, BAUD_RATE_921600},
{B2000000, BAUD_RATE_2000000},
{B3000000, BAUD_RATE_3000000},
};
static speed_t _get_speed(int baudrate)
{
int index;
for (index = 0; index < sizeof(_tbl) / sizeof(_tbl[0]); index++)
{
if (_tbl[index].baudrate == baudrate)
return _tbl[index].speed;
}
return B0;
}
static int _get_baudrate(speed_t speed)
{
int index;
for (index = 0; index < sizeof(_tbl) / sizeof(_tbl[0]); index++)
{
if (_tbl[index].speed == speed)
return _tbl[index].baudrate;
}
return 0;
}
static void _tc_flush(struct rt_serial_device *serial, int queue)
{
RT_ASSERT(serial != RT_NULL);
if (queue == TCIFLUSH || queue == TCIOFLUSH)
{
_serial_rx_flush(serial);
}
if (queue == TCOFLUSH || queue == TCIOFLUSH)
{
_serial_tx_flush(serial);
}
}
#endif /* RT_USING_POSIX_TERMIOS */
/**
* @brief Control the serial device.
* @param dev The pointer of device driver structure
* @param cmd The command value that controls the serial device
* @param args The parameter value that controls the serial device
* @return Return the status of the operation.
*/
static rt_err_t rt_serial_control(struct rt_device *dev,
int cmd,
void *args)
{
rt_err_t ret = RT_EOK;
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
switch (cmd)
{
case RT_DEVICE_CTRL_SUSPEND:
/* suspend device */
dev->flag |= RT_DEVICE_FLAG_SUSPENDED;
break;
case RT_DEVICE_CTRL_RESUME:
/* resume device */
dev->flag &= ~RT_DEVICE_FLAG_SUSPENDED;
break;
case RT_DEVICE_CTRL_CONFIG:
if (args == RT_NULL)
{
ret = -RT_EINVAL;
}
else
{
struct serial_configure *pconfig = (struct serial_configure *)args;
if (((pconfig->rx_bufsz != serial->config.rx_bufsz)
|| (pconfig->tx_bufsz != serial->config.tx_bufsz)
#ifdef RT_SERIAL_USING_DMA
|| (pconfig->dma_ping_bufsz != serial->config.dma_ping_bufsz)
#endif
)
&& serial->parent.ref_count != 0)
{
/*can not change buffer size*/
ret = -RT_EBUSY;
break;
}
/* set serial configure */
serial->config = *pconfig;
serial->ops->configure(serial, (struct serial_configure *)args);
}
break;
case RT_DEVICE_CTRL_NOTIFY_SET:
if (args == RT_NULL)
{
ret = -RT_EINVAL;
}
else
{
rt_memcpy(&serial->rx_notify, args, sizeof(struct rt_device_notify));
}
break;
case RT_DEVICE_CTRL_CONSOLE_OFLAG:
if (args == RT_NULL)
{
ret = -RT_EINVAL;
}
else
{
*(rt_uint16_t *)args = RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_STREAM;
}
break;
/* Call before rt_device_read */
case RT_SERIAL_CTRL_SET_RX_TIMEOUT:
if (args == RT_NULL)
{
ret = -RT_EINVAL;
}
else
{
if (serial->config.rx_bufsz == 0)
{
ret = -RT_EPERM;
}
struct rt_serial_rx_fifo *rx_fifo = RT_NULL;
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_atomic_store(&rx_fifo->rx_timeout, *(rt_int32_t *)args);
}
break;
/* Call before rt_device_write */
case RT_SERIAL_CTRL_SET_TX_TIMEOUT:
if (args == RT_NULL)
{
ret = -RT_EINVAL;
}
else
{
if (serial->config.tx_bufsz == 0)
{
ret = -RT_EPERM;
}
struct rt_serial_tx_fifo *tx_fifo = RT_NULL;
tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
rt_atomic_store(&tx_fifo->tx_timeout, *(rt_int32_t *)args);
}
break;
case RT_SERIAL_CTRL_GET_RX_TIMEOUT:
if (args == RT_NULL)
{
ret = -RT_EINVAL;
}
else
{
if (serial->config.rx_bufsz == 0)
{
ret = -RT_EPERM;
}
struct rt_serial_rx_fifo *rx_fifo = RT_NULL;
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
*(rt_int32_t *)args = rt_atomic_load(&rx_fifo->rx_timeout);
}
break;
case RT_SERIAL_CTRL_GET_TX_TIMEOUT:
if (args == RT_NULL)
{
ret = -RT_EINVAL;
}
else
{
if (serial->config.tx_bufsz == 0)
{
ret = -RT_EPERM;
}
struct rt_serial_tx_fifo *tx_fifo = RT_NULL;
tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
*(rt_int32_t *)args = rt_atomic_load(&tx_fifo->tx_timeout);
}
break;
/* Discard all data */
case RT_SERIAL_CTRL_RX_FLUSH:
_serial_rx_flush(serial);
break;
/* Blocking and wait for the send buffer data to be sent. */
case RT_SERIAL_CTRL_TX_FLUSH:
_serial_tx_flush(serial);
break;
/* get unread bytes count. */
case RT_SERIAL_CTRL_GET_UNREAD_BYTES_COUNT:
if (args == RT_NULL)
{
ret = -RT_EINVAL;
}
else
{
ret = _serial_get_unread_bytes_count(serial, (rt_ssize_t *)args);
}
break;
#ifdef RT_USING_POSIX_STDIO
#ifdef RT_USING_POSIX_TERMIOS
case TCGETA: {
struct termios *tio = (struct termios *)args;
if (tio == RT_NULL) return -RT_EINVAL;
tio->c_iflag = 0;
tio->c_oflag = 0;
tio->c_lflag = 0;
/* update oflag for console device */
if (rt_console_get_device() == dev)
tio->c_oflag = OPOST | ONLCR;
/* set cflag */
tio->c_cflag = 0;
if (serial->config.data_bits == DATA_BITS_5)
tio->c_cflag = CS5;
else if (serial->config.data_bits == DATA_BITS_6)
tio->c_cflag = CS6;
else if (serial->config.data_bits == DATA_BITS_7)
tio->c_cflag = CS7;
else if (serial->config.data_bits == DATA_BITS_8)
tio->c_cflag = CS8;
if (serial->config.stop_bits == STOP_BITS_2)
tio->c_cflag |= CSTOPB;
if (serial->config.parity == PARITY_EVEN)
tio->c_cflag |= PARENB;
else if (serial->config.parity == PARITY_ODD)
tio->c_cflag |= (PARODD | PARENB);
if (serial->config.flowcontrol == RT_SERIAL_FLOWCONTROL_CTSRTS)
tio->c_cflag |= CRTSCTS;
cfsetospeed(tio, _get_speed(serial->config.baud_rate));
}
break;
case TCSETAW:
case TCSETAF:
case TCSETA: {
int baudrate;
struct serial_configure config;
struct termios *tio = (struct termios *)args;
if (tio == RT_NULL) return -RT_EINVAL;
config = serial->config;
baudrate = _get_baudrate(cfgetospeed(tio));
config.baud_rate = baudrate;
switch (tio->c_cflag & CSIZE)
{
case CS5:
config.data_bits = DATA_BITS_5;
break;
case CS6:
config.data_bits = DATA_BITS_6;
break;
case CS7:
config.data_bits = DATA_BITS_7;
break;
default:
config.data_bits = DATA_BITS_8;
break;
}
if (tio->c_cflag & CSTOPB)
config.stop_bits = STOP_BITS_2;
else
config.stop_bits = STOP_BITS_1;
if (tio->c_cflag & PARENB)
{
if (tio->c_cflag & PARODD)
config.parity = PARITY_ODD;
else
config.parity = PARITY_EVEN;
}
else
config.parity = PARITY_NONE;
if (tio->c_cflag & CRTSCTS)
config.flowcontrol = RT_SERIAL_FLOWCONTROL_CTSRTS;
else
config.flowcontrol = RT_SERIAL_FLOWCONTROL_NONE;
/* set serial configure */
serial->config = config;
serial->ops->configure(serial, &config);
}
break;
case TCFLSH: {
int queue = (int)args;
_tc_flush(serial, queue);
}
break;
case TCXONC:
break;
#endif /*RT_USING_POSIX_TERMIOS*/
case TIOCSWINSZ: {
struct winsize *p_winsize;
p_winsize = (struct winsize *)args;
rt_kprintf("\x1b[8;%d;%dt", p_winsize->ws_col, p_winsize->ws_row);
}
break;
case TIOCGWINSZ: {
struct winsize *p_winsize;
p_winsize = (struct winsize *)args;
if (rt_thread_self() != rt_thread_find(FINSH_THREAD_NAME))
{
/* only can be used in tshell thread; otherwise, return default size */
p_winsize->ws_col = 80;
p_winsize->ws_row = 24;
}
else
{
#include <shell.h>
#define _TIO_BUFLEN 20
char _tio_buf[_TIO_BUFLEN];
unsigned char cnt1, cnt2, cnt3, i;
char row_s[4], col_s[4];
char *p;
rt_memset(_tio_buf, 0, _TIO_BUFLEN);
/* send the command to terminal for getting the window size of the terminal */
rt_kprintf("\033[18t");
/* waiting for the response from the terminal */
i = 0;
while (i < _TIO_BUFLEN)
{
_tio_buf[i] = finsh_getchar();
if (_tio_buf[i] != 't')
{
i++;
}
else
{
break;
}
}
if (i == _TIO_BUFLEN)
{
/* buffer overloaded, and return default size */
p_winsize->ws_col = 80;
p_winsize->ws_row = 24;
break;
}
/* interpreting data eg: "\033[8;1;15t" which means row is 1 and col is 15 (unit: size of ONE character) */
rt_memset(row_s, 0, 4);
rt_memset(col_s, 0, 4);
cnt1 = 0;
while (cnt1 < _TIO_BUFLEN && _tio_buf[cnt1] != ';')
{
cnt1++;
}
cnt2 = ++cnt1;
while (cnt2 < _TIO_BUFLEN && _tio_buf[cnt2] != ';')
{
cnt2++;
}
p = row_s;
while (cnt1 < cnt2)
{
*p++ = _tio_buf[cnt1++];
}
p = col_s;
cnt2++;
cnt3 = rt_strlen(_tio_buf) - 1;
while (cnt2 < cnt3)
{
*p++ = _tio_buf[cnt2++];
}
/* load the window size date */
p_winsize->ws_col = atoi(col_s);
p_winsize->ws_row = atoi(row_s);
#undef _TIO_BUFLEN
}
p_winsize->ws_xpixel = 0; /* unused */
p_winsize->ws_ypixel = 0; /* unused */
}
break;
case FIONREAD:
if (args == RT_NULL)
{
ret = -RT_EINVAL;
}
else
{
rt_ssize_t unread_bytes = 0;
ret = _serial_get_unread_bytes_count(serial, &unread_bytes);
if (ret == RT_EOK)
*(rt_size_t *)args = (rt_size_t)unread_bytes;
else
*(rt_size_t *)args = 0;
}
break;
#endif /* RT_USING_POSIX_STDIO */
default:
/* control device */
ret = serial->ops->control(serial, cmd, args);
break;
}
return ret;
}
#ifdef RT_USING_DEVICE_OPS
static rt_ssize_t rt_serial_read(struct rt_device *dev,
rt_off_t pos,
void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
if (size == 0) return 0;
serial = (struct rt_serial_device *)dev;
if (serial->config.rx_bufsz)
{
return _serial_fifo_rx(dev, pos, buffer, size);
}
return _serial_poll_rx(dev, pos, buffer, size);
}
static rt_ssize_t rt_serial_write(struct rt_device *dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
struct rt_serial_tx_fifo *tx_fifo;
RT_ASSERT(dev != RT_NULL);
if (size == 0) return 0;
serial = (struct rt_serial_device *)dev;
RT_ASSERT((serial != RT_NULL) && (buffer != RT_NULL));
tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx;
if (serial->config.tx_bufsz == 0)
{
return _serial_poll_tx(dev, pos, buffer, size);
}
if (dev->open_flag & RT_SERIAL_TX_BLOCKING)
{
RT_ASSERT(tx_fifo != RT_NULL);
if ((tx_fifo->rb.buffer_ptr) == RT_NULL)
{
return _serial_fifo_tx_blocking_nbuf(dev, pos, buffer, size);
}
return _serial_fifo_tx_blocking_buf(dev, pos, buffer, size);
}
return _serial_fifo_tx_nonblocking(dev, pos, buffer, size);
}
const static struct rt_device_ops serial_ops =
{
rt_serial_init,
rt_serial_open,
rt_serial_close,
rt_serial_read,
rt_serial_write,
rt_serial_control};
#endif
/**
* @brief Register the serial device.
* @param serial RT-thread serial device.
* @param name The device driver's name
* @param flag The capabilities flag of device.
* @param data The device driver's data.
* @return Return the status of the operation.
*/
rt_err_t rt_hw_serial_register(struct rt_serial_device *serial,
const char *name,
rt_uint32_t flag,
void *data)
{
rt_err_t ret;
struct rt_device *device;
RT_ASSERT(serial != RT_NULL);
rt_spin_lock_init(&serial->spinlock);
device = &serial->parent;
device->type = RT_Device_Class_Char;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
#ifdef RT_USING_DEVICE_OPS
device->ops = &serial_ops;
#else
device->init = rt_serial_init;
device->open = rt_serial_open;
device->close = rt_serial_close;
device->read = RT_NULL;
device->write = RT_NULL;
device->control = rt_serial_control;
#endif
device->user_data = data;
/* register a character device */
ret = rt_device_register(device, name, flag);
#ifdef RT_USING_POSIX_STDIO
/* set fops */
device->fops = &_serial_fops;
#endif
return ret;
}
/**
* @brief ISR for serial interrupt
* @param serial RT-thread serial device.
* @param event ISR event type.
*/
rt_err_t rt_hw_serial_control_isr(struct rt_serial_device *serial, int cmd, void *args)
{
RT_ASSERT(serial != RT_NULL);
rt_err_t ret = RT_EOK;
switch (cmd)
{
case RT_HW_SERIAL_CTRL_PUTC:
if (args == RT_NULL)
{
ret = -RT_EINVAL;
}
else
{
struct rt_serial_rx_fifo *rx_fifo = RT_NULL;
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
#ifdef RT_SERIAL_BUF_STRATEGY_DROP
rt_ringbuffer_putchar(&rx_fifo->rb, *(rt_uint8_t *)args);
#else
rt_ringbuffer_putchar_force(&rx_fifo->rb, *(rt_uint8_t *)args);
#endif /* RT_SERIAL_BUF_STRATEGY_DROP */
}
break;
case RT_HW_SERIAL_CTRL_GETC:
if (args == RT_NULL)
{
ret = -RT_EINVAL;
}
else
{
struct rt_serial_tx_fifo *tx_fifo = RT_NULL;
tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
if (rt_ringbuffer_getchar(&tx_fifo->rb, (rt_uint8_t *)args) == 0)
{
ret = -RT_EEMPTY;
}
}
break;
#ifdef RT_SERIAL_USING_DMA
case RT_HW_SERIAL_CTRL_GET_DMA_PING_BUF:
if (args == RT_NULL)
{
ret = -RT_EINVAL;
}
else
{
struct rt_serial_rx_fifo *rx_fifo = RT_NULL;
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
*(rt_uint8_t **)args = rx_fifo->dma_ping_rb.buffer_ptr;
}
break;
#endif
default:
ret = -RT_EINVAL;
break;
}
return ret;
}
/**
* @brief ISR for serial interrupt
* @param serial RT-thread serial device.
* @param event ISR event type.
*/
void rt_hw_serial_isr(struct rt_serial_device *serial, int event)
{
RT_ASSERT(serial != RT_NULL);
switch (event & 0xff)
{
/* Interrupt receive event */
case RT_SERIAL_EVENT_RX_IND:
case RT_SERIAL_EVENT_RX_DMADONE: {
struct rt_serial_rx_fifo *rx_fifo;
rt_size_t rx_length;
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
#ifdef RT_SERIAL_USING_DMA
rt_base_t level;
/* If the event is RT_SERIAL_EVENT_RX_IND, rx_length is equal to 0 */
rx_length = event >> 8;
/* RT_SERIAL_EVENT_RX_DMADONE MODE */
if (rx_length != 0)
{
#ifdef RT_SERIAL_BUF_STRATEGY_DROP
rt_uint8_t *ptr;
rt_size_t size;
rt_size_t space_len;
/* UART_IT_IDLE and dma isr */
level = rt_spin_lock_irqsave(&serial->spinlock);
do
{
space_len = rt_ringbuffer_space_len(&rx_fifo->rb);
if (space_len == 0)
break;
rt_serial_update_write_index(&rx_fifo->dma_ping_rb, rx_length);
size = rt_ringbuffer_peek(&rx_fifo->dma_ping_rb, &ptr);
space_len -= rt_ringbuffer_put(&rx_fifo->rb, ptr, size);
if (space_len == 0)
break;
size = rt_ringbuffer_peek(&rx_fifo->dma_ping_rb, &ptr);
if (size == 0)
break;
rt_ringbuffer_put(&rx_fifo->rb, ptr, size);
} while (0);
rt_spin_unlock_irqrestore(&serial->spinlock, level);
#else
rt_uint8_t *ptr;
rt_size_t size;
/* UART_IT_IDLE and dma isr */
level = rt_spin_lock_irqsave(&serial->spinlock);
rt_serial_update_write_index(&rx_fifo->dma_ping_rb, rx_length);
do
{
size = rt_ringbuffer_peek(&rx_fifo->dma_ping_rb, &ptr);
rt_ringbuffer_put_force(&rx_fifo->rb, ptr, size);
size = rt_ringbuffer_peek(&rx_fifo->dma_ping_rb, &ptr);
if (size == 0)
break;
rt_ringbuffer_put_force(&rx_fifo->rb, ptr, size);
} while (0);
rt_spin_unlock_irqrestore(&serial->spinlock, level);
#endif /* RT_SERIAL_BUF_STRATEGY_DROP */
}
#endif /* RT_SERIAL_USING_DMA */
rx_length = rt_ringbuffer_data_len(&rx_fifo->rb);
if (rx_length == 0)
{
break;
}
if (serial->parent.open_flag & RT_SERIAL_RX_BLOCKING)
{
if (rx_fifo->rx_cpt_index && rx_length >= rx_fifo->rx_cpt_index)
{
rx_fifo->rx_cpt_index = 0;
rt_completion_done(&rx_fifo->rx_cpt);
}
}
/* Trigger the receiving completion callback */
if (serial->parent.rx_indicate != RT_NULL)
{
serial->parent.rx_indicate(&serial->parent, rx_length);
}
if (serial->rx_notify.notify != RT_NULL)
{
serial->rx_notify.notify(serial->rx_notify.dev);
}
break;
}
/* Interrupt transmit event */
case RT_SERIAL_EVENT_TX_DONE: {
struct rt_serial_tx_fifo *tx_fifo;
rt_size_t tx_length = 0;
tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
/* Get the length of the data from the ringbuffer */
tx_length = rt_ringbuffer_data_len(&tx_fifo->rb);
/* If there is no data in tx_ringbuffer,
* then the transmit completion callback is triggered*/
if (tx_length == 0)
{
rt_completion_done(&tx_fifo->tx_cpt);
/* Trigger the transmit completion callback */
if (serial->parent.tx_complete != RT_NULL)
{
serial->parent.tx_complete(&serial->parent, RT_NULL);
}
rt_atomic_flag_clear(&tx_fifo->activated);
break;
}
rt_atomic_flag_test_and_set(&tx_fifo->activated);
/* Call the transmit interface for transmission again */
/* Note that in interrupt mode, tx_fifo->buffer and tx_length
* are inactive parameters */
serial->ops->transmit(serial,
tx_fifo->rb.buffer_ptr,
tx_length,
serial->parent.open_flag & (RT_SERIAL_TX_BLOCKING | RT_SERIAL_TX_NON_BLOCKING));
break;
}
#ifdef RT_SERIAL_USING_DMA
case RT_SERIAL_EVENT_TX_DMADONE: {
struct rt_serial_tx_fifo *tx_fifo;
rt_size_t tx_length = 0;
tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
if ((serial->parent.open_flag & RT_SERIAL_TX_BLOCKING) != RT_SERIAL_TX_BLOCKING || rt_ringbuffer_get_size(&tx_fifo->rb) != 0)
{
// 每次进来中断就说明之前的put_size已经被发送完毕了
rt_serial_update_read_index(&tx_fifo->rb, tx_fifo->put_size);
/* Get the length of the data from the ringbuffer */
tx_length = rt_ringbuffer_data_len(&tx_fifo->rb);
if (tx_length != 0)
{
/* If there is some data in tx_ringbuffer,
* then call the transmit interface for transmission again */
rt_atomic_flag_test_and_set(&tx_fifo->activated);
rt_uint8_t *put_ptr = RT_NULL;
/* Get the linear length buffer from ringbuffer */
tx_fifo->put_size = rt_serial_get_linear_buffer(&tx_fifo->rb, &put_ptr);
/* Call the transmit interface for transmission again */
serial->ops->transmit(serial,
put_ptr,
tx_fifo->put_size,
RT_SERIAL_TX_NON_BLOCKING);
break;
}
}
rt_completion_done(&tx_fifo->tx_cpt);
/* Trigger the transmit completion callback */
if (serial->parent.tx_complete != RT_NULL)
{
serial->parent.tx_complete(&serial->parent, RT_NULL);
}
rt_atomic_flag_clear(&tx_fifo->activated);
break;
}
#endif /* RT_SERIAL_USING_DMA */
default:
break;
}
}