forked from StoneAtom/StoneDB
926 lines
48 KiB
C++
926 lines
48 KiB
C++
/* Copyright (c) 2014, 2021, Oracle and/or its affiliates.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License, version 2.0,
|
|
as published by the Free Software Foundation.
|
|
|
|
This program is also distributed with certain software (including
|
|
but not limited to OpenSSL) that is licensed under separate terms,
|
|
as designated in a particular file or component or in included license
|
|
documentation. The authors of MySQL hereby grant you an additional
|
|
permission to link the program and your derivative works with the
|
|
separately licensed software that they have included with MySQL.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License, version 2.0, for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
#include "rpl_write_set_handler.h"
|
|
|
|
#include "my_global.h"
|
|
#include "my_stacktrace.h" // my_safe_itoa
|
|
#include "field.h" // Field
|
|
#include "sql_class.h" // THD
|
|
#include "sql_list.h" // List
|
|
#include "table.h" // TABLE
|
|
#include "rpl_handler.h"
|
|
|
|
#include "my_murmur3.h" // murmur3_32
|
|
#include "my_xxhash.h" // xxHash
|
|
|
|
#include <map>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
// The number of digits of ULLONG_MAX plus '\0'
|
|
#define VALUE_LENGTH_BUFFER_SIZE 24
|
|
#define NAME_READ_BUFFER_SIZE 1024
|
|
#define HASH_STRING_SEPARATOR "½"
|
|
#define COLLATION_CONVERSION_ALGORITHM 1
|
|
|
|
const char *transaction_write_set_hashing_algorithms[]=
|
|
{
|
|
"OFF",
|
|
"MURMUR32",
|
|
"XXHASH64"
|
|
,0
|
|
};
|
|
|
|
const char*
|
|
get_write_set_algorithm_string(unsigned int algorithm)
|
|
{
|
|
switch(algorithm)
|
|
{
|
|
case HASH_ALGORITHM_OFF:
|
|
return "OFF";
|
|
case HASH_ALGORITHM_MURMUR32:
|
|
return "MURMUR32";
|
|
case HASH_ALGORITHM_XXHASH64:
|
|
return "XXHASH64";
|
|
default:
|
|
return "UNKNOWN ALGORITHM";
|
|
}
|
|
}
|
|
|
|
template <class type> uint64 calc_hash(ulong algorithm, type T, size_t len)
|
|
{
|
|
if(algorithm == HASH_ALGORITHM_MURMUR32)
|
|
return (murmur3_32((const uchar*)T, len, 0));
|
|
else
|
|
return (MY_XXH64((const uchar*)T, len, 0));
|
|
}
|
|
|
|
/**
|
|
Function to check if the given TABLE has any foreign key field. This is
|
|
needed to be checked to get the hash of the field value in the foreign
|
|
table.
|
|
|
|
This function is meant to be only called by add_pke() function, some
|
|
conditions are check there for performance optimization.
|
|
|
|
@param[in] table - TABLE object
|
|
@param[in] thd - THD object pointing to current thread.
|
|
|
|
@param[out] foreign_key_map - a standard map which keeps track of the
|
|
foreign key fields.
|
|
*/
|
|
static void check_foreign_key(TABLE *table, THD *thd,
|
|
std::map<std::string,std::string> &foreign_key_map)
|
|
{
|
|
DBUG_ENTER("check_foreign_key");
|
|
assert(!(thd->variables.option_bits & OPTION_NO_FOREIGN_KEY_CHECKS));
|
|
char value_length_buffer[VALUE_LENGTH_BUFFER_SIZE];
|
|
char* value_length= NULL;
|
|
|
|
std::string pke_prefix;
|
|
pke_prefix.reserve(NAME_LEN * 5);
|
|
|
|
List<FOREIGN_KEY_INFO> f_key_list;
|
|
table->file->get_foreign_key_list(thd, &f_key_list);
|
|
|
|
FOREIGN_KEY_INFO *f_key_info;
|
|
List_iterator_fast<FOREIGN_KEY_INFO> foreign_key_iterator(f_key_list);
|
|
LEX_STRING *f_info;
|
|
while ((f_key_info=foreign_key_iterator++))
|
|
{
|
|
/*
|
|
If referenced_key_name is NULL it means that the parent table
|
|
was dropped using foreign_key_checks= 0, on that case we
|
|
cannot check foreign key and need to skip it.
|
|
*/
|
|
if (f_key_info->referenced_key_name == NULL)
|
|
continue;
|
|
|
|
/*
|
|
Prefix the hash keys with the referenced index name.
|
|
*/
|
|
pke_prefix.clear();
|
|
pke_prefix.append(f_key_info->referenced_key_name->str,
|
|
f_key_info->referenced_key_name->length);
|
|
pke_prefix.append(HASH_STRING_SEPARATOR);
|
|
pke_prefix.append(f_key_info->referenced_db->str,
|
|
f_key_info->referenced_db->length);
|
|
pke_prefix.append(HASH_STRING_SEPARATOR);
|
|
value_length= my_safe_itoa(10, f_key_info->referenced_db->length,
|
|
&value_length_buffer[VALUE_LENGTH_BUFFER_SIZE-1]);
|
|
pke_prefix.append(value_length);
|
|
pke_prefix.append(f_key_info->referenced_table->str,
|
|
f_key_info->referenced_table->length);
|
|
pke_prefix.append(HASH_STRING_SEPARATOR);
|
|
value_length= my_safe_itoa(10, f_key_info->referenced_table->length,
|
|
&value_length_buffer[VALUE_LENGTH_BUFFER_SIZE-1]);
|
|
pke_prefix.append(value_length);
|
|
|
|
List_iterator_fast<LEX_STRING> foreign_fields_iterator(f_key_info->foreign_fields);
|
|
while ((f_info= foreign_fields_iterator++))
|
|
{
|
|
foreign_key_map[f_info->str]= pke_prefix;
|
|
}
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static void debug_check_for_write_sets(std::vector<std::string> &key_list_to_hash,
|
|
std::vector<uint64> &hash_list)
|
|
{
|
|
DBUG_EXECUTE_IF("PKE_assert_single_primary_key_generated_insert",
|
|
assert(key_list_to_hash.size() == 2);
|
|
assert(key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "1");
|
|
assert(hash_list.size() == 2);
|
|
assert(hash_list[0] == 2897372530352804122ULL);
|
|
assert(hash_list[1] == 340395741608101502ULL););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_single_primary_key_generated_insert_collation",
|
|
assert(key_list_to_hash.size() == 2);
|
|
assert(key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0]);
|
|
assert(hash_list.size() == 2);
|
|
assert(hash_list[0] == 340395741608101502ULL);
|
|
assert(hash_list[1] == hash_list[0]););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_single_primary_key_generated_update",
|
|
assert(key_list_to_hash.size() == 2);
|
|
assert(key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1" ||
|
|
key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "1");
|
|
assert(hash_list.size() == 2);
|
|
assert(hash_list[0] == 8147168586610610204ULL ||
|
|
hash_list[0] == 2897372530352804122ULL);
|
|
assert(hash_list[1] == 8563267070232261320ULL ||
|
|
hash_list[1] == 340395741608101502ULL););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_single_primary_key_generated_update_collation",
|
|
assert(key_list_to_hash.size() == 2);
|
|
assert((key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0]) ||
|
|
(key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0]));
|
|
assert(hash_list.size() == 2);
|
|
assert((hash_list[0] == 8563267070232261320ULL && hash_list[0] == hash_list[1]) ||
|
|
(hash_list[0] == 340395741608101502ULL && hash_list[0] == hash_list[1])););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_multi_primary_key_generated_insert",
|
|
assert(key_list_to_hash.size() == 2);
|
|
assert(key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "12"
|
|
HASH_STRING_SEPARATOR "1");
|
|
assert(hash_list.size() == 2);
|
|
assert(hash_list[0] == 1691122509389864327ULL);
|
|
assert(hash_list[1] == 13655149628280894901ULL););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_multi_primary_key_generated_insert_collation",
|
|
assert(key_list_to_hash.size() == 2);
|
|
assert(key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "12"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0]);
|
|
assert(hash_list.size() == 2);
|
|
assert(hash_list[0] == 13655149628280894901ULL);
|
|
assert(hash_list[1] == hash_list[0]););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_multi_primary_key_generated_update",
|
|
assert(key_list_to_hash.size() == 2);
|
|
assert(key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "12"
|
|
HASH_STRING_SEPARATOR "1" ||
|
|
key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "12"
|
|
HASH_STRING_SEPARATOR "1");
|
|
assert(hash_list.size() == 2);
|
|
assert(hash_list[0] == 3905848172375270818ULL ||
|
|
hash_list[0] == 1691122509389864327ULL);
|
|
assert(hash_list[1] == 16833405476607614310ULL ||
|
|
hash_list[1] == 13655149628280894901ULL););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_multi_primary_key_generated_update_collation",
|
|
assert(key_list_to_hash.size() == 2);
|
|
assert((key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "12"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0]) ||
|
|
(key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "12"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0]));
|
|
assert(hash_list.size() == 2);
|
|
assert((hash_list[0] == 16833405476607614310ULL && hash_list[0] == hash_list[1]) ||
|
|
(hash_list[0] == 13655149628280894901ULL && hash_list[0] == hash_list[1])););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_single_primary_unique_key_generated_insert",
|
|
assert(key_list_to_hash.size() == 6);
|
|
assert(key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[3] == "c2" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "22" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[5] == "c3" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1");
|
|
assert(hash_list.size() == 6);
|
|
assert(hash_list[0] == 2897372530352804122ULL);
|
|
assert(hash_list[1] == 340395741608101502ULL);
|
|
assert(hash_list[2] == 18399953872590645955ULL);
|
|
assert(hash_list[3] == 12796928550717161120ULL);
|
|
assert(hash_list[4] == 11353180532661898235ULL);
|
|
assert(hash_list[5] == 11199547876733116431ULL););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_single_primary_unique_key_generated_insert_collation",
|
|
assert(key_list_to_hash.size() == 6);
|
|
assert(key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[2] == "c2" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "22" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[4] == "c3" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0] &&
|
|
key_list_to_hash[3] == key_list_to_hash[2] &&
|
|
key_list_to_hash[5] == key_list_to_hash[4]);
|
|
assert(hash_list.size() == 6);
|
|
assert(hash_list[0] == 340395741608101502ULL && hash_list[1] == hash_list[0]);
|
|
assert(hash_list[2] == 12796928550717161120ULL && hash_list[3] == hash_list[2]);
|
|
assert(hash_list[4] == 11199547876733116431ULL && hash_list[5] == hash_list[4]););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_single_primary_unique_key_generated_update",
|
|
assert(key_list_to_hash.size() == 6);
|
|
assert((key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[3] == "c2" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "22" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[5] == "c3" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1") ||
|
|
(key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[3] == "c2" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "22" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[5] == "c3" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1"));
|
|
assert(hash_list.size() == 6);
|
|
assert((hash_list[0] == 14771035529829851738ULL &&
|
|
hash_list[1] == 7803002059431370747ULL &&
|
|
hash_list[2] == 18399953872590645955ULL &&
|
|
hash_list[3] == 12796928550717161120ULL &&
|
|
hash_list[4] == 11353180532661898235ULL &&
|
|
hash_list[5] == 11199547876733116431ULL) ||
|
|
(hash_list[0] == 2897372530352804122ULL &&
|
|
hash_list[1] == 340395741608101502ULL &&
|
|
hash_list[2] == 18399953872590645955ULL &&
|
|
hash_list[3] == 12796928550717161120ULL &&
|
|
hash_list[4] == 11353180532661898235ULL &&
|
|
hash_list[5] == 11199547876733116431ULL)););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_single_primary_unique_key_generated_update_collation",
|
|
assert(key_list_to_hash.size() == 6);
|
|
assert((key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[2] == "c2" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "22" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[4] == "c3" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0] &&
|
|
key_list_to_hash[3] == key_list_to_hash[2] &&
|
|
key_list_to_hash[5] == key_list_to_hash[4]) ||
|
|
(key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[2] == "c2" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "22" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[4] == "c3" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0] &&
|
|
key_list_to_hash[3] == key_list_to_hash[2] &&
|
|
key_list_to_hash[5] == key_list_to_hash[4]));
|
|
assert(hash_list.size() == 6);
|
|
assert((hash_list[0] == 7803002059431370747ULL &&
|
|
hash_list[2] == 12796928550717161120ULL &&
|
|
hash_list[4] == 11199547876733116431ULL &&
|
|
hash_list[1] == hash_list[0] &&
|
|
hash_list[3] == hash_list[2] &&
|
|
hash_list[5] == hash_list[4]) ||
|
|
(hash_list[0] == 340395741608101502ULL &&
|
|
hash_list[2] == 12796928550717161120ULL &&
|
|
hash_list[4] == 11199547876733116431ULL &&
|
|
hash_list[1] == hash_list[0] &&
|
|
hash_list[3] == hash_list[2] &&
|
|
hash_list[5] == hash_list[4])););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_multi_primary_unique_key_generated_insert",
|
|
assert(key_list_to_hash.size() == 6);
|
|
assert(key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "12"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[3] == "b" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[5] == "c" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "24" HASH_STRING_SEPARATOR "1");
|
|
assert(hash_list.size() == 6);
|
|
assert(hash_list[0] == 1691122509389864327ULL);
|
|
assert(hash_list[1] == 13655149628280894901ULL);
|
|
assert(hash_list[2] == 12533984864941331840ULL);
|
|
assert(hash_list[3] == 8954424140835647185ULL);
|
|
assert(hash_list[4] == 14184162977259375422ULL);
|
|
assert(hash_list[5] == 3520344117573337805ULL););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_multi_primary_unique_key_generated_insert_collation",
|
|
assert(key_list_to_hash.size() == 6);
|
|
assert(key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "12"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[2] == "b" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[4] == "c" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "24" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0] &&
|
|
key_list_to_hash[3] == key_list_to_hash[2] &&
|
|
key_list_to_hash[5] == key_list_to_hash[4]);
|
|
assert(hash_list.size() == 6);
|
|
assert(hash_list[0] == 13655149628280894901ULL && hash_list[1] == hash_list[0]);
|
|
assert(hash_list[2] == 8954424140835647185ULL && hash_list[3] == hash_list[2]);
|
|
assert(hash_list[4] == 3520344117573337805ULL && hash_list[5] == hash_list[4]););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_multi_primary_unique_key_generated_update",
|
|
assert(key_list_to_hash.size() == 6);
|
|
assert((key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "12"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[3] == "b" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[5] == "c" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "24" HASH_STRING_SEPARATOR "1") ||
|
|
(key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "12"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[3] == "b" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[5] == "c" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "24" HASH_STRING_SEPARATOR "1"));
|
|
assert(hash_list.size() == 6);
|
|
assert((hash_list[0] == 1691122509389864327ULL &&
|
|
hash_list[1] == 13655149628280894901ULL &&
|
|
hash_list[2] == 12533984864941331840ULL &&
|
|
hash_list[3] == 8954424140835647185ULL &&
|
|
hash_list[4] == 14184162977259375422ULL &&
|
|
hash_list[5] == 3520344117573337805ULL) ||
|
|
(hash_list[0] == 3950570981230755523ULL &&
|
|
hash_list[1] == 17122769277112661326ULL &&
|
|
hash_list[2] == 12533984864941331840ULL &&
|
|
hash_list[3] == 8954424140835647185ULL &&
|
|
hash_list[4] == 14184162977259375422ULL &&
|
|
hash_list[5] == 3520344117573337805ULL)););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_multi_primary_unique_key_generated_update_collation",
|
|
assert(key_list_to_hash.size() == 6);
|
|
assert((key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "12"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[2] == "b" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[4] == "c" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "24" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0] &&
|
|
key_list_to_hash[3] == key_list_to_hash[2] &&
|
|
key_list_to_hash[5] == key_list_to_hash[4]) ||
|
|
(key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "12"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[2] == "b" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[4] == "c" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "24" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0] &&
|
|
key_list_to_hash[3] == key_list_to_hash[2] &&
|
|
key_list_to_hash[5] == key_list_to_hash[4]));
|
|
assert(hash_list.size() == 6);
|
|
assert((hash_list[1] == 13655149628280894901ULL &&
|
|
hash_list[3] == 8954424140835647185ULL &&
|
|
hash_list[5] == 3520344117573337805ULL &&
|
|
key_list_to_hash[1] == key_list_to_hash[0] &&
|
|
key_list_to_hash[3] == key_list_to_hash[2] &&
|
|
key_list_to_hash[5] == key_list_to_hash[4]) ||
|
|
(hash_list[1] == 17122769277112661326ULL &&
|
|
hash_list[3] == 8954424140835647185ULL &&
|
|
hash_list[5] == 3520344117573337805ULL &&
|
|
key_list_to_hash[1] == key_list_to_hash[0] &&
|
|
key_list_to_hash[3] == key_list_to_hash[2] &&
|
|
key_list_to_hash[5] == key_list_to_hash[4])););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_multi_foreign_key_generated_insert",
|
|
assert(key_list_to_hash.size() == 8);
|
|
assert(key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t3"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "15"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[3] == "c2" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t3"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[5] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[7] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t2"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "1");
|
|
assert(hash_list.size() == 8);
|
|
assert(hash_list[0] == 4888980339825597978ULL);
|
|
assert(hash_list[1] == 3283233640848908273ULL);
|
|
assert(hash_list[2] == 274016005206261698ULL);
|
|
assert(hash_list[3] == 17221725733811443497ULL);
|
|
assert(hash_list[4] == 2897372530352804122ULL);
|
|
assert(hash_list[5] == 340395741608101502ULL);
|
|
assert(hash_list[6] == 3473606527244955984ULL);
|
|
assert(hash_list[7] == 14682037479339770823ULL););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_multi_foreign_key_generated_insert_collation",
|
|
assert(key_list_to_hash.size() == 8);
|
|
assert(key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t3"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "15"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[2] == "c2" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t3"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[4] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[6] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t2"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0] &&
|
|
key_list_to_hash[3] == key_list_to_hash[2] &&
|
|
key_list_to_hash[5] == key_list_to_hash[4] &&
|
|
key_list_to_hash[7] == key_list_to_hash[6]);
|
|
assert(hash_list.size() == 8);
|
|
assert(hash_list[1] == 3283233640848908273ULL && hash_list[1] == hash_list[0]);
|
|
assert(hash_list[3] == 17221725733811443497ULL && hash_list[3] == hash_list[2]);
|
|
assert(hash_list[5] == 340395741608101502ULL && hash_list[5] == hash_list[4]);
|
|
assert(hash_list[7] == 14682037479339770823ULL && hash_list[7] == hash_list[6]););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_multi_foreign_key_generated_update",
|
|
assert(key_list_to_hash.size() == 8);
|
|
assert((key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t3"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "15"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[3] == "c2" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t3"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[5] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[7] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t2"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "1") ||
|
|
(key_list_to_hash[1] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t3"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "15"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[3] == "c2" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t3"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[5] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[7] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t2"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "1"));
|
|
assert(hash_list.size() == 8);
|
|
assert((hash_list[0] == 4888980339825597978ULL &&
|
|
hash_list[1] == 3283233640848908273ULL &&
|
|
hash_list[2] == 274016005206261698ULL &&
|
|
hash_list[3] == 17221725733811443497ULL &&
|
|
hash_list[4] == 2897372530352804122ULL &&
|
|
hash_list[5] == 340395741608101502ULL &&
|
|
hash_list[6] == 3473606527244955984ULL &&
|
|
hash_list[7] == 14682037479339770823ULL) ||
|
|
(hash_list[0] == 8035853452724126883ULL &&
|
|
hash_list[1] == 12666755939597291234ULL &&
|
|
hash_list[2] == 274016005206261698ULL &&
|
|
hash_list[3] == 17221725733811443497ULL &&
|
|
hash_list[4] == 8147168586610610204ULL &&
|
|
hash_list[5] == 8563267070232261320ULL &&
|
|
hash_list[6] == 3473606527244955984ULL &&
|
|
hash_list[7] == 14682037479339770823ULL)););
|
|
|
|
DBUG_EXECUTE_IF("PKE_assert_multi_foreign_key_generated_update_collation",
|
|
assert(key_list_to_hash.size() == 8);
|
|
assert((key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t3"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "15"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[2] == "c2" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t3"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[4] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "21" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[6] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t2"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0] &&
|
|
key_list_to_hash[3] == key_list_to_hash[2] &&
|
|
key_list_to_hash[4] == key_list_to_hash[4] &&
|
|
key_list_to_hash[7] == key_list_to_hash[6]) ||
|
|
(key_list_to_hash[0] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t3"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "15"
|
|
HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[2] == "c2" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t3"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[4] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t1"
|
|
HASH_STRING_SEPARATOR "23" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[6] == "PRIMARY" HASH_STRING_SEPARATOR "test" HASH_STRING_SEPARATOR "4t2"
|
|
HASH_STRING_SEPARATOR "25" HASH_STRING_SEPARATOR "1" &&
|
|
key_list_to_hash[1] == key_list_to_hash[0] &&
|
|
key_list_to_hash[3] == key_list_to_hash[2] &&
|
|
key_list_to_hash[4] == key_list_to_hash[4] &&
|
|
key_list_to_hash[7] == key_list_to_hash[6]));
|
|
assert(hash_list.size() == 8);
|
|
assert((hash_list[1] == 3283233640848908273ULL && hash_list[1] == hash_list[0] &&
|
|
hash_list[3] == 17221725733811443497ULL && hash_list[3] == hash_list[2] &&
|
|
hash_list[5] == 340395741608101502ULL && hash_list[5] == hash_list[4] &&
|
|
hash_list[7] == 14682037479339770823ULL && hash_list[7] == hash_list[6]) ||
|
|
(hash_list[1] == 12666755939597291234ULL && hash_list[1] == hash_list[0] &&
|
|
hash_list[3] == 17221725733811443497ULL && hash_list[3] == hash_list[2] &&
|
|
hash_list[5] == 8563267070232261320ULL && hash_list[5] == hash_list[4] &&
|
|
hash_list[7] == 14682037479339770823ULL && hash_list[7] == hash_list[6])););
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
Function to generate the hash of the string passed to this function.
|
|
|
|
@param[in] pke - the string to be hashed.
|
|
@param[in] collation_conversion_algorithm - algorithm used for the conversion
|
|
0 - converted using without
|
|
collation support algorithm
|
|
1 - converted using with collation
|
|
support conversion algorithm
|
|
|
|
@param[in] thd - THD object pointing to current thread.
|
|
@param[in] write_sets - list of all write sets
|
|
@param[in] hash_list - list of all hashes
|
|
@return true if a problem occurred on generation or write set tracking.
|
|
*/
|
|
|
|
static bool generate_hash_pke(const std::string &pke, uint collation_conversion_algorithm, THD* thd
|
|
#ifndef NDEBUG
|
|
, std::vector<std::string> &write_sets
|
|
, std::vector<uint64> &hash_list
|
|
#endif
|
|
)
|
|
{
|
|
assert(thd->variables.transaction_write_set_extraction !=
|
|
HASH_ALGORITHM_OFF);
|
|
|
|
size_t length= (COLLATION_CONVERSION_ALGORITHM == collation_conversion_algorithm) ?
|
|
pke.size() : strlen(pke.c_str());
|
|
uint64 hash= calc_hash<const char *>(thd->variables.transaction_write_set_extraction,
|
|
pke.c_str(), length);
|
|
if (thd->get_transaction()->get_transaction_write_set_ctx()->add_write_set(hash))
|
|
return true;
|
|
#ifndef NDEBUG
|
|
write_sets.push_back(pke);
|
|
hash_list.push_back(hash);
|
|
#endif
|
|
DBUG_PRINT("info", ("pke: %s; hash: %llu", pke.c_str(), hash));
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool add_pke(TABLE *table, THD *thd, const uchar *record)
|
|
{
|
|
assert(record == table->record[0] || record == table->record[1]);
|
|
/*
|
|
The next section extracts the primary key equivalent of the rows that are
|
|
changing during the current transaction.
|
|
|
|
1. The primary key field is always stored in the key_part[0] so we can simply
|
|
read the value from the table->s->keys.
|
|
|
|
2. Along with primary key we also need to extract the unique key values to
|
|
look for the places where we are breaking the unique key constraints.
|
|
|
|
These keys (primary/unique) are prefixed with their index names.
|
|
|
|
In MySQL, the name of a PRIMARY KEY is PRIMARY. For other indexes, if
|
|
you do not assign a name, the index is assigned the same name as the
|
|
first indexed column, with an optional suffix (_2, _3, ...) to make it
|
|
unique.
|
|
|
|
example :
|
|
CREATE TABLE db1.t1 (i INT NOT NULL PRIMARY KEY, j INT UNIQUE KEY, k INT
|
|
UNIQUE KEY);
|
|
|
|
INSERT INTO db1.t1 VALUES(1, 2, 3);
|
|
|
|
Here the write set string will have three values and the prepared value before
|
|
hash function is used will be :
|
|
|
|
i -> PRIMARYdb13t1211 => PRIMARY is the index name (for primary key)
|
|
|
|
j -> jdb13t1221 => 'j' is the index name (for first unique key)
|
|
k -> kdb13t1231 => 'k' is the index name (for second unique key)
|
|
|
|
Finally these value are hashed using the murmur hash function to prevent sending more
|
|
for certification algorithm.
|
|
*/
|
|
Rpl_transaction_write_set_ctx* ws_ctx=
|
|
thd->get_transaction()->get_transaction_write_set_ctx();
|
|
int writeset_hashes_added= 0;
|
|
|
|
if(table->key_info && (table->s->primary_key < MAX_KEY))
|
|
{
|
|
ptrdiff_t ptrdiff = record - table->record[0];
|
|
|
|
char value_length_buffer[VALUE_LENGTH_BUFFER_SIZE];
|
|
char* value_length= NULL;
|
|
|
|
std::string pke_schema_table;
|
|
pke_schema_table.reserve(NAME_LEN * 3);
|
|
pke_schema_table.append(HASH_STRING_SEPARATOR);
|
|
pke_schema_table.append(table->s->db.str, table->s->db.length);
|
|
pke_schema_table.append(HASH_STRING_SEPARATOR);
|
|
value_length= my_safe_itoa(10, table->s->db.length,
|
|
&value_length_buffer[VALUE_LENGTH_BUFFER_SIZE-1]);
|
|
pke_schema_table.append(value_length);
|
|
pke_schema_table.append(table->s->table_name.str, table->s->table_name.length);
|
|
pke_schema_table.append(HASH_STRING_SEPARATOR);
|
|
value_length= my_safe_itoa(10, table->s->table_name.length,
|
|
&value_length_buffer[VALUE_LENGTH_BUFFER_SIZE-1]);
|
|
pke_schema_table.append(value_length);
|
|
|
|
std::string pke;
|
|
pke.reserve(NAME_LEN * 5);
|
|
|
|
char *pk_value= NULL;
|
|
size_t pk_value_size= 0;
|
|
|
|
// Buffer to read the names of the database and table names which is less
|
|
// than 1024. So its a safe limit.
|
|
char name_read_buffer[NAME_READ_BUFFER_SIZE];
|
|
// Buffer to read the row data from the table record[0].
|
|
String row_data(name_read_buffer, sizeof(name_read_buffer), &my_charset_bin);
|
|
|
|
#ifndef NDEBUG
|
|
std::vector<std::string> write_sets;
|
|
std::vector<uint64> hash_list;
|
|
#endif
|
|
|
|
for (uint key_number=0; key_number < table->s->keys; key_number++)
|
|
{
|
|
// Skip non unique.
|
|
if (!((table->key_info[key_number].flags & (HA_NOSAME )) == HA_NOSAME))
|
|
continue;
|
|
|
|
/*
|
|
To handle both members having hash values with and without collation
|
|
in the same group, we generate and send both versions (with and without
|
|
collation) of the hash in the newer versions. This would mean that a row
|
|
change will generate 2 instead of 1 writeset, and 4 instead of 2, when PK
|
|
are involved. This will mean that a transaction will be certified against
|
|
two writesets instead of just one.
|
|
|
|
To generate both versions (with and without collation) of the hash, it
|
|
first converts using without collation support algorithm (old algorithm),
|
|
and then using with collation support conversion algorithm, and adds
|
|
generated value to key_list_to_hash vector, for hash generation later.
|
|
|
|
Since the collation writeset is bigger or equal than the raw one, we do
|
|
generate first the collation and reuse the buffer without the need to
|
|
resize for the raw.
|
|
*/
|
|
for (int collation_conversion_algorithm= COLLATION_CONVERSION_ALGORITHM;
|
|
collation_conversion_algorithm >= 0;
|
|
collation_conversion_algorithm--)
|
|
{
|
|
pke.clear();
|
|
pke.append(table->key_info[key_number].name);
|
|
pke.append(pke_schema_table);
|
|
|
|
uint i= 0;
|
|
for (/*empty*/; i < table->key_info[key_number].user_defined_key_parts; i++)
|
|
{
|
|
// read the primary key field values in str.
|
|
int index= table->key_info[key_number].key_part[i].fieldnr;
|
|
size_t length= 0;
|
|
|
|
Field *field= table->field[index - 1];
|
|
/* Ignore if the value is NULL. */
|
|
if (field->is_null(ptrdiff)) break;
|
|
|
|
/*
|
|
Update the field offset as we may be working on table->record[0]
|
|
or table->record[1], depending on the "record" parameter.
|
|
*/
|
|
field->move_field_offset(ptrdiff);
|
|
|
|
// convert using collation support conversion algorithm
|
|
if (COLLATION_CONVERSION_ALGORITHM == collation_conversion_algorithm)
|
|
{
|
|
const CHARSET_INFO* cs= table->field[index-1]->charset();
|
|
length= cs->coll->strnxfrmlen(cs,
|
|
table->field[index-1]->pack_length());
|
|
}
|
|
// convert using without collation support algorithm
|
|
else
|
|
{
|
|
table->field[index-1]->val_str(&row_data);
|
|
length= row_data.length();
|
|
}
|
|
|
|
if (pk_value_size < length+1)
|
|
{
|
|
pk_value_size= length+1;
|
|
pk_value= (char*) my_realloc(key_memory_write_set_extraction,
|
|
pk_value, pk_value_size,
|
|
MYF(MY_ZEROFILL));
|
|
}
|
|
|
|
// convert using collation support conversion algorithm
|
|
if (COLLATION_CONVERSION_ALGORITHM == collation_conversion_algorithm)
|
|
{
|
|
/*
|
|
convert to normalized string and store so that it can be
|
|
sorted using binary comparison functions like memcmp.
|
|
*/
|
|
table->field[index-1]->make_sort_key((uchar*)pk_value, length);
|
|
pk_value[length]= 0;
|
|
}
|
|
// convert using without collation support algorithm
|
|
else
|
|
{
|
|
strmake(pk_value, row_data.c_ptr_safe(), length);
|
|
}
|
|
|
|
pke.append(pk_value, length);
|
|
pke.append(HASH_STRING_SEPARATOR);
|
|
value_length= my_safe_itoa(10, length,
|
|
&value_length_buffer[VALUE_LENGTH_BUFFER_SIZE-1]);
|
|
pke.append(value_length);
|
|
field->move_field_offset(-ptrdiff);
|
|
}
|
|
|
|
/*
|
|
If any part of the key is NULL, ignore adding it to hash keys.
|
|
NULL cannot conflict with any value.
|
|
Eg: create table t1(i int primary key not null, j int, k int,
|
|
unique key (j, k));
|
|
insert into t1 values (1, 2, NULL);
|
|
insert into t1 values (2, 2, NULL); => this is allowed.
|
|
*/
|
|
if (i == table->key_info[key_number].user_defined_key_parts)
|
|
{
|
|
if (generate_hash_pke(pke, collation_conversion_algorithm, thd
|
|
#ifndef NDEBUG
|
|
, write_sets, hash_list
|
|
#endif
|
|
))
|
|
{
|
|
return true;
|
|
}
|
|
writeset_hashes_added++;
|
|
}
|
|
else
|
|
{
|
|
/* This is impossible to happen in case of primary keys */
|
|
assert(key_number !=0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Foreign keys handling.
|
|
We check the foreign keys existence here and not at check_foreign_key()
|
|
function to avoid allocate foreign_key_map when it is not needed.
|
|
|
|
OPTION_NO_FOREIGN_KEY_CHECKS bit in options_bits is set at two places
|
|
|
|
1) If the user executed 'SET foreign_key_checks= 0' on the local session
|
|
before executing the query.
|
|
or
|
|
2) We are applying a RBR event (i.e., the event is from a remote server)
|
|
and logic in Rows_log_event::do_apply_event found out that the event is
|
|
generated from a remote server session that disabled foreign_key_checks
|
|
(using 'SET foreign_key_checks=0').
|
|
|
|
In either of the above cases (i.e., the foreign key check is disabled for
|
|
the current query/current event), we should ignore generating
|
|
the foreign key information as they should not participate
|
|
in the conflicts detecting algorithm.
|
|
*/
|
|
if (!(thd->variables.option_bits & OPTION_NO_FOREIGN_KEY_CHECKS))
|
|
{
|
|
std::map<std::string,std::string> foreign_key_map;
|
|
check_foreign_key(table, thd, foreign_key_map);
|
|
|
|
if (!foreign_key_map.empty())
|
|
{
|
|
for (uint i=0; i < table->s->fields; i++)
|
|
{
|
|
Field *field = table->field[i];
|
|
if (field->is_null(ptrdiff)) continue;
|
|
|
|
/*
|
|
Update the field offset, since we may be operating on
|
|
table->record[0] or table->record[1] and both have
|
|
different offsets.
|
|
*/
|
|
field->move_field_offset(ptrdiff);
|
|
|
|
std::map<std::string,std::string>::iterator it=
|
|
foreign_key_map.find(table->s->field[i]->field_name);
|
|
if (foreign_key_map.end() != it)
|
|
{
|
|
for (int collation_conversion_algorithm= COLLATION_CONVERSION_ALGORITHM;
|
|
collation_conversion_algorithm >= 0;
|
|
collation_conversion_algorithm--)
|
|
{
|
|
std::string pke_prefix= it->second;
|
|
size_t length= 0;
|
|
|
|
// convert using collation support conversion algorithm
|
|
if (COLLATION_CONVERSION_ALGORITHM == collation_conversion_algorithm)
|
|
{
|
|
const CHARSET_INFO* cs= table->field[i]->charset();
|
|
length= cs->coll->strnxfrmlen(cs,
|
|
table->field[i]->pack_length());
|
|
}
|
|
// convert using without collation support algorithm
|
|
else
|
|
{
|
|
table->field[i]->val_str(&row_data);
|
|
length= row_data.length();
|
|
}
|
|
|
|
if (pk_value_size < length+1)
|
|
{
|
|
pk_value_size= length+1;
|
|
pk_value= (char*) my_realloc(key_memory_write_set_extraction,
|
|
pk_value, pk_value_size,
|
|
MYF(MY_ZEROFILL));
|
|
}
|
|
|
|
// convert using collation support conversion algorithm
|
|
if (COLLATION_CONVERSION_ALGORITHM == collation_conversion_algorithm)
|
|
{
|
|
/*
|
|
convert to normalized string and store so that it can be
|
|
sorted using binary comparison functions like memcmp.
|
|
*/
|
|
table->field[i]->make_sort_key((uchar*)pk_value, length);
|
|
pk_value[length]= 0;
|
|
}
|
|
// convert using without collation support algorithm
|
|
else
|
|
{
|
|
strmake(pk_value, row_data.c_ptr_safe(), length);
|
|
}
|
|
|
|
pke_prefix.append(pk_value, length);
|
|
pke_prefix.append(HASH_STRING_SEPARATOR);
|
|
value_length= my_safe_itoa(10, length,
|
|
&value_length_buffer[VALUE_LENGTH_BUFFER_SIZE-1]);
|
|
pke_prefix.append(value_length);
|
|
|
|
if (generate_hash_pke(pke_prefix, collation_conversion_algorithm, thd
|
|
#ifndef NDEBUG
|
|
, write_sets, hash_list
|
|
#endif
|
|
))
|
|
{
|
|
return true;
|
|
}
|
|
writeset_hashes_added++;
|
|
}
|
|
}
|
|
/* revert the field object record offset back */
|
|
field->move_field_offset(-ptrdiff);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (table->file->referenced_by_foreign_key())
|
|
ws_ctx->set_has_related_foreign_keys();
|
|
|
|
my_free(pk_value);
|
|
|
|
#ifndef NDEBUG
|
|
debug_check_for_write_sets(write_sets, hash_list);
|
|
#endif
|
|
}
|
|
|
|
if (writeset_hashes_added == 0)
|
|
ws_ctx->set_has_missing_keys();
|
|
|
|
return false;
|
|
}
|