forked from JointCloud/JCC-DeepOD
update README.rst
This commit is contained in:
parent
f56e1082d0
commit
02781744da
16
README.rst
16
README.rst
|
@ -11,7 +11,7 @@ Python Deep Outlier/Anomaly Detection (DeepOD)
|
|||
|
||||
.. image:: https://app.codacy.com/project/badge/Grade/2c587126aac2441abb917c032189fbe8
|
||||
:target: https://app.codacy.com/gh/xuhongzuo/DeepOD/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade
|
||||
:alt: coveralls
|
||||
:alt: codacy
|
||||
|
||||
.. image:: https://coveralls.io/repos/github/xuhongzuo/DeepOD/badge.svg?branch=main
|
||||
:target: https://coveralls.io/github/xuhongzuo/DeepOD?branch=main
|
||||
|
@ -292,17 +292,3 @@ Reference
|
|||
.. [#Xu2023RoSAS] Xu, Hongzuo et al. "RoSAS: Deep semi-supervised anomaly detection with contamination-resilient continuous supervision". IP&M. 2023.
|
||||
|
||||
|
||||
Contributors
|
||||
~~~~~~~~~~~~~~~~~
|
||||
|
||||
Thanks goes to these wonderful people (`emoji key`_):
|
||||
|
||||
.. _emoji key: https://allcontributors.org/docs/en/emoji-key
|
||||
|
||||
.. raw:: html
|
||||
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
|
||||
<table>
|
||||
# ...
|
||||
</table>
|
||||
|
||||
<!-- ALL-CONTRIBUTORS-LIST:END -->
|
|
@ -0,0 +1,141 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import sys
|
||||
import unittest
|
||||
|
||||
# noinspection PyProtectedMember
|
||||
from numpy.testing import assert_equal
|
||||
from sklearn.metrics import roc_auc_score
|
||||
import torch
|
||||
import pandas as pd
|
||||
|
||||
# temporary solution for relative imports in case pyod is not installed
|
||||
# if deepod is installed, no need to use the following line
|
||||
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
||||
|
||||
from deepod.models.time_series.ncad import NCAD
|
||||
|
||||
|
||||
class TestDCdetector(unittest.TestCase):
|
||||
def setUp(self):
|
||||
train_file = 'data/omi-1/omi-1_train.csv'
|
||||
test_file = 'data/omi-1/omi-1_test.csv'
|
||||
train_df = pd.read_csv(train_file, sep=',', index_col=0)
|
||||
test_df = pd.read_csv(test_file, index_col=0)
|
||||
y = test_df['label'].values
|
||||
train_df, test_df = train_df.drop('label', axis=1), test_df.drop('label', axis=1)
|
||||
self.Xts_train = train_df.values
|
||||
self.Xts_test = test_df.values
|
||||
self.yts_test = y
|
||||
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
self.clf = NCAD(seq_len=100, stride=1, epochs=2,
|
||||
batch_size=32, lr=1e-4,
|
||||
device=device, random_state=42)
|
||||
self.clf.fit(self.Xts_train)
|
||||
|
||||
def test_parameters(self):
|
||||
assert (hasattr(self.clf, 'decision_scores_') and
|
||||
self.clf.decision_scores_ is not None)
|
||||
assert (hasattr(self.clf, 'labels_') and
|
||||
self.clf.labels_ is not None)
|
||||
assert (hasattr(self.clf, 'threshold_') and
|
||||
self.clf.threshold_ is not None)
|
||||
|
||||
def test_train_scores(self):
|
||||
assert_equal(len(self.clf.decision_scores_), self.Xts_train.shape[0])
|
||||
|
||||
def test_prediction_scores(self):
|
||||
pred_scores = self.clf.decision_function(self.Xts_test)
|
||||
assert_equal(pred_scores.shape[0], self.Xts_test.shape[0])
|
||||
|
||||
def test_prediction_labels(self):
|
||||
pred_labels = self.clf.predict(self.Xts_test)
|
||||
assert_equal(pred_labels.shape, self.yts_test.shape)
|
||||
|
||||
# def test_prediction_proba(self):
|
||||
# pred_proba = self.clf.predict_proba(self.X_test)
|
||||
# assert (pred_proba.min() >= 0)
|
||||
# assert (pred_proba.max() <= 1)
|
||||
#
|
||||
# def test_prediction_proba_linear(self):
|
||||
# pred_proba = self.clf.predict_proba(self.X_test, method='linear')
|
||||
# assert (pred_proba.min() >= 0)
|
||||
# assert (pred_proba.max() <= 1)
|
||||
#
|
||||
# def test_prediction_proba_unify(self):
|
||||
# pred_proba = self.clf.predict_proba(self.X_test, method='unify')
|
||||
# assert (pred_proba.min() >= 0)
|
||||
# assert (pred_proba.max() <= 1)
|
||||
#
|
||||
# def test_prediction_proba_parameter(self):
|
||||
# with assert_raises(ValueError):
|
||||
# self.clf.predict_proba(self.X_test, method='something')
|
||||
|
||||
def test_prediction_labels_confidence(self):
|
||||
pred_labels, confidence = self.clf.predict(self.Xts_test, return_confidence=True)
|
||||
|
||||
assert_equal(pred_labels.shape, self.yts_test.shape)
|
||||
assert_equal(confidence.shape, self.yts_test.shape)
|
||||
assert (confidence.min() >= 0)
|
||||
assert (confidence.max() <= 1)
|
||||
|
||||
# def test_prediction_proba_linear_confidence(self):
|
||||
# pred_proba, confidence = self.clf.predict_proba(self.X_test,
|
||||
# method='linear',
|
||||
# return_confidence=True)
|
||||
# assert (pred_proba.min() >= 0)
|
||||
# assert (pred_proba.max() <= 1)
|
||||
#
|
||||
# assert_equal(confidence.shape, self.y_test.shape)
|
||||
# assert (confidence.min() >= 0)
|
||||
# assert (confidence.max() <= 1)
|
||||
#
|
||||
# def test_fit_predict(self):
|
||||
# pred_labels = self.clf.fit_predict(self.X_train)
|
||||
# assert_equal(pred_labels.shape, self.y_train.shape)
|
||||
#
|
||||
# def test_fit_predict_score(self):
|
||||
# self.clf.fit_predict_score(self.X_test, self.y_test)
|
||||
# self.clf.fit_predict_score(self.X_test, self.y_test,
|
||||
# scoring='roc_auc_score')
|
||||
# self.clf.fit_predict_score(self.X_test, self.y_test,
|
||||
# scoring='prc_n_score')
|
||||
# with assert_raises(NotImplementedError):
|
||||
# self.clf.fit_predict_score(self.X_test, self.y_test,
|
||||
# scoring='something')
|
||||
#
|
||||
# def test_predict_rank(self):
|
||||
# pred_socres = self.clf.decision_function(self.X_test)
|
||||
# pred_ranks = self.clf._predict_rank(self.X_test)
|
||||
#
|
||||
# # assert the order is reserved
|
||||
# assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3)
|
||||
# assert_array_less(pred_ranks, self.X_train.shape[0] + 1)
|
||||
# assert_array_less(-0.1, pred_ranks)
|
||||
#
|
||||
# def test_predict_rank_normalized(self):
|
||||
# pred_socres = self.clf.decision_function(self.X_test)
|
||||
# pred_ranks = self.clf._predict_rank(self.X_test, normalized=True)
|
||||
#
|
||||
# # assert the order is reserved
|
||||
# assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3)
|
||||
# assert_array_less(pred_ranks, 1.01)
|
||||
# assert_array_less(-0.1, pred_ranks)
|
||||
|
||||
# def test_plot(self):
|
||||
# os, cutoff1, cutoff2 = self.clf.explain_outlier(ind=1)
|
||||
# assert_array_less(0, os)
|
||||
|
||||
# def test_model_clone(self):
|
||||
# clone_clf = clone(self.clf)
|
||||
|
||||
def tearDown(self):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in New Issue