293 lines
11 KiB
C++
293 lines
11 KiB
C++
/******************************************************************************
|
|
*
|
|
* Project: GDAL
|
|
* Purpose: GDAL Wrapper for image matching via correlation algorithm.
|
|
* Author: Frank Warmerdam, warmerdam@pobox.com
|
|
* Author: Andrew Migal, migal.drew@gmail.com
|
|
*
|
|
******************************************************************************
|
|
* Copyright (c) 2012, Frank Warmerdam
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
****************************************************************************/
|
|
|
|
#include "gdal_alg.h"
|
|
#include "gdal_simplesurf.h"
|
|
|
|
//! @cond Doxygen_Suppress
|
|
|
|
//! @endcond
|
|
|
|
// TODO(schwehr): What? This below: "0,001"
|
|
|
|
/**
|
|
* @file
|
|
* @author Andrew Migal migal.drew@gmail.com
|
|
* @brief Algorithms for searching corresponding points on images.
|
|
* @details This implementation is based on an simplified version
|
|
* of SURF algorithm (Speeded Up Robust Features).
|
|
* Provides capability for detection feature points
|
|
* and finding equal points on different images.
|
|
* As original, this realization is scale invariant, but sensitive to rotation.
|
|
* Images should have similar rotation angles (maximum difference is up to 10-15
|
|
* degrees), otherwise algorithm produces incorrect and very unstable results.
|
|
*/
|
|
|
|
/**
|
|
* Detect feature points on provided image. Please carefully read documentation
|
|
* below.
|
|
*
|
|
* @param poDataset Image on which feature points will be detected
|
|
* @param panBands Array of 3 raster bands numbers, for Red, Green, Blue bands
|
|
* (in that order)
|
|
* @param nOctaveStart Number of bottom octave. Octave numbers starts from one.
|
|
* This value directly and strongly affects to amount of recognized points
|
|
* @param nOctaveEnd Number of top octave. Should be equal or greater than
|
|
* octaveStart
|
|
* @param dfThreshold Value from 0 to 1. Threshold for feature point
|
|
* recognition. Number of detected points is larger if threshold is lower
|
|
*
|
|
* @see GDALFeaturePoint, GDALSimpleSURF class for details.
|
|
*
|
|
* @note Every octave finds points in specific size. For small images
|
|
* use small octave numbers, for high resolution - large.
|
|
* For 1024x1024 images it's normal to use any octave numbers from range 1-6.
|
|
* (for example, octave start - 1, octave end - 3, or octave start - 2, octave
|
|
* end - 2.)
|
|
* For larger images, try 1-10 range or even higher.
|
|
* Pay attention that number of detected point decreases quickly per octave for
|
|
* particular image. Algorithm finds more points in case of small octave number.
|
|
* If method detects nothing, reduce octave start value.
|
|
* In addition, if many feature points are required (the largest possible
|
|
* amount), use the lowest octave start value (1) and wide octave range.
|
|
*
|
|
* @note Typical threshold's value is 0,001. It's pretty good for all images.
|
|
* But this value depends on image's nature and may be various in each
|
|
* particular case.
|
|
* For example, value can be 0,002 or 0,005.
|
|
* Notice that number of detected points is larger if threshold is lower.
|
|
* But with high threshold feature points will be better - "stronger", more
|
|
* "unique" and distinctive.
|
|
*
|
|
* Feel free to experiment with parameters, because character, robustness and
|
|
* number of points entirely depend on provided range of octaves and threshold.
|
|
*
|
|
* NOTICE that every octave requires time to compute. Use a little range
|
|
* or only one octave, if execution time is significant.
|
|
*
|
|
* @return CE_None or CE_Failure if error occurs.
|
|
*/
|
|
|
|
static std::vector<GDALFeaturePoint> *
|
|
GatherFeaturePoints(GDALDataset *poDataset, int *panBands, int nOctaveStart,
|
|
int nOctaveEnd, double dfThreshold)
|
|
{
|
|
if (poDataset == nullptr)
|
|
{
|
|
CPLError(CE_Failure, CPLE_AppDefined, "GDALDataset isn't specified");
|
|
return nullptr;
|
|
}
|
|
|
|
if (panBands == nullptr)
|
|
{
|
|
CPLError(CE_Failure, CPLE_AppDefined, "Raster bands are not specified");
|
|
return nullptr;
|
|
}
|
|
|
|
if (nOctaveStart <= 0 || nOctaveEnd < 0 || nOctaveStart > nOctaveEnd)
|
|
{
|
|
CPLError(CE_Failure, CPLE_AppDefined, "Octave numbers are invalid");
|
|
return nullptr;
|
|
}
|
|
|
|
if (dfThreshold < 0)
|
|
{
|
|
CPLError(CE_Failure, CPLE_AppDefined,
|
|
"Threshold have to be greater than zero");
|
|
return nullptr;
|
|
}
|
|
|
|
GDALRasterBand *poRstRedBand = poDataset->GetRasterBand(panBands[0]);
|
|
GDALRasterBand *poRstGreenBand = poDataset->GetRasterBand(panBands[1]);
|
|
GDALRasterBand *poRstBlueBand = poDataset->GetRasterBand(panBands[2]);
|
|
|
|
const int nWidth = poRstRedBand->GetXSize();
|
|
const int nHeight = poRstRedBand->GetYSize();
|
|
|
|
if (nWidth == 0 || nHeight == 0)
|
|
{
|
|
CPLError(CE_Failure, CPLE_AppDefined,
|
|
"Must have non-zero width and height.");
|
|
return nullptr;
|
|
}
|
|
|
|
// Allocate memory for grayscale image.
|
|
double **padfImg = new double *[nHeight];
|
|
for (int i = 0;;)
|
|
{
|
|
padfImg[i] = new double[nWidth];
|
|
for (int j = 0; j < nWidth; ++j)
|
|
padfImg[i][j] = 0.0;
|
|
++i;
|
|
if (i == nHeight)
|
|
break;
|
|
}
|
|
|
|
// Create grayscale image.
|
|
GDALSimpleSURF::ConvertRGBToLuminosity(poRstRedBand, poRstGreenBand,
|
|
poRstBlueBand, nWidth, nHeight,
|
|
padfImg, nHeight, nWidth);
|
|
|
|
// Prepare integral image.
|
|
GDALIntegralImage *poImg = new GDALIntegralImage();
|
|
poImg->Initialize(const_cast<const double **>(padfImg), nHeight, nWidth);
|
|
|
|
// Get feature points.
|
|
GDALSimpleSURF *poSurf = new GDALSimpleSURF(nOctaveStart, nOctaveEnd);
|
|
|
|
std::vector<GDALFeaturePoint> *poCollection =
|
|
poSurf->ExtractFeaturePoints(poImg, dfThreshold);
|
|
|
|
// Clean up.
|
|
delete poImg;
|
|
delete poSurf;
|
|
|
|
for (int i = 0; i < nHeight; ++i)
|
|
delete[] padfImg[i];
|
|
|
|
delete[] padfImg;
|
|
|
|
return poCollection;
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* GDALComputeMatchingPoints() */
|
|
/************************************************************************/
|
|
|
|
/** GDALComputeMatchingPoints. TODO document */
|
|
GDAL_GCP CPL_DLL *GDALComputeMatchingPoints(GDALDatasetH hFirstImage,
|
|
GDALDatasetH hSecondImage,
|
|
char **papszOptions,
|
|
int *pnGCPCount)
|
|
{
|
|
*pnGCPCount = 0;
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Override default algorithm parameters. */
|
|
/* -------------------------------------------------------------------- */
|
|
int nOctaveStart, nOctaveEnd;
|
|
double dfSURFThreshold;
|
|
|
|
nOctaveStart =
|
|
atoi(CSLFetchNameValueDef(papszOptions, "OCTAVE_START", "2"));
|
|
nOctaveEnd = atoi(CSLFetchNameValueDef(papszOptions, "OCTAVE_END", "2"));
|
|
|
|
dfSURFThreshold =
|
|
CPLAtof(CSLFetchNameValueDef(papszOptions, "SURF_THRESHOLD", "0.001"));
|
|
const double dfMatchingThreshold = CPLAtof(
|
|
CSLFetchNameValueDef(papszOptions, "MATCHING_THRESHOLD", "0.015"));
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Identify the bands to use. For now we are effectively */
|
|
/* limited to using RGB input so if we have one band only treat */
|
|
/* it as red=green=blue=band 1. Disallow non eightbit imagery. */
|
|
/* -------------------------------------------------------------------- */
|
|
int anBandMap1[3] = {1, 1, 1};
|
|
if (GDALGetRasterCount(hFirstImage) >= 3)
|
|
{
|
|
anBandMap1[1] = 2;
|
|
anBandMap1[2] = 3;
|
|
}
|
|
|
|
int anBandMap2[3] = {1, 1, 1};
|
|
if (GDALGetRasterCount(hSecondImage) >= 3)
|
|
{
|
|
anBandMap2[1] = 2;
|
|
anBandMap2[2] = 3;
|
|
}
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Collect reference points on each image. */
|
|
/* -------------------------------------------------------------------- */
|
|
std::vector<GDALFeaturePoint> *poFPCollection1 =
|
|
GatherFeaturePoints(GDALDataset::FromHandle(hFirstImage), anBandMap1,
|
|
nOctaveStart, nOctaveEnd, dfSURFThreshold);
|
|
if (poFPCollection1 == nullptr)
|
|
return nullptr;
|
|
|
|
std::vector<GDALFeaturePoint> *poFPCollection2 =
|
|
GatherFeaturePoints(GDALDataset::FromHandle(hSecondImage), anBandMap2,
|
|
nOctaveStart, nOctaveEnd, dfSURFThreshold);
|
|
|
|
if (poFPCollection2 == nullptr)
|
|
{
|
|
delete poFPCollection1;
|
|
return nullptr;
|
|
}
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Try to find corresponding locations. */
|
|
/* -------------------------------------------------------------------- */
|
|
std::vector<GDALFeaturePoint *> oMatchPairs;
|
|
|
|
if (CE_None != GDALSimpleSURF::MatchFeaturePoints(
|
|
&oMatchPairs, poFPCollection1, poFPCollection2,
|
|
dfMatchingThreshold))
|
|
{
|
|
delete poFPCollection1;
|
|
delete poFPCollection2;
|
|
return nullptr;
|
|
}
|
|
|
|
*pnGCPCount = static_cast<int>(oMatchPairs.size()) / 2;
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Translate these into GCPs - but with the output coordinate */
|
|
/* system being pixel/line on the second image. */
|
|
/* -------------------------------------------------------------------- */
|
|
GDAL_GCP *pasGCPList =
|
|
static_cast<GDAL_GCP *>(CPLCalloc(*pnGCPCount, sizeof(GDAL_GCP)));
|
|
|
|
GDALInitGCPs(*pnGCPCount, pasGCPList);
|
|
|
|
for (int i = 0; i < *pnGCPCount; i++)
|
|
{
|
|
GDALFeaturePoint *poPoint1 = oMatchPairs[i * 2];
|
|
GDALFeaturePoint *poPoint2 = oMatchPairs[i * 2 + 1];
|
|
|
|
pasGCPList[i].dfGCPPixel = poPoint1->GetX() + 0.5;
|
|
pasGCPList[i].dfGCPLine = poPoint1->GetY() + 0.5;
|
|
|
|
pasGCPList[i].dfGCPX = poPoint2->GetX() + 0.5;
|
|
pasGCPList[i].dfGCPY = poPoint2->GetY() + 0.5;
|
|
pasGCPList[i].dfGCPZ = 0.0;
|
|
}
|
|
|
|
// Cleanup the feature point lists.
|
|
delete poFPCollection1;
|
|
delete poFPCollection2;
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Optionally transform into the georef coordinates of the */
|
|
/* output image. */
|
|
/* -------------------------------------------------------------------- */
|
|
const bool bGeorefOutput =
|
|
CPLTestBool(CSLFetchNameValueDef(papszOptions, "OUTPUT_GEOREF", "NO"));
|
|
|
|
if (bGeorefOutput)
|
|
{
|
|
double adfGeoTransform[6] = {};
|
|
|
|
GDALGetGeoTransform(hSecondImage, adfGeoTransform);
|
|
|
|
for (int i = 0; i < *pnGCPCount; i++)
|
|
{
|
|
GDALApplyGeoTransform(adfGeoTransform, pasGCPList[i].dfGCPX,
|
|
pasGCPList[i].dfGCPY, &(pasGCPList[i].dfGCPX),
|
|
&(pasGCPList[i].dfGCPY));
|
|
}
|
|
}
|
|
|
|
return pasGCPList;
|
|
}
|