invest/tests/test_wave_energy.py

682 lines
27 KiB
Python

"""Module for Testing the InVEST Wave Energy module."""
import unittest
import tempfile
import shutil
import os
import re
import numpy
import numpy.testing
import pandas
import pandas.testing
from osgeo import gdal
from osgeo import osr, ogr
from shapely.geometry import Polygon
from shapely.geometry import Point
from natcap.invest import utils
import pygeoprocessing
gdal.UseExceptions()
REGRESSION_DATA = os.path.join(
os.path.dirname(__file__), '..', 'data', 'invest-test-data', 'wave_energy')
SAMPLE_DATA = os.path.join(REGRESSION_DATA, 'input')
def _make_empty_files(workspace_dir):
"""Within workspace, make intermediate and output folders with dummy files.
Args:
workspace_dir: path to workspace for creating intermediate/output
folder.
Returns:
None.
"""
intermediate_files = [
'WEM_InputOutput_Pts.shp', 'aoi_clipped_to_extract_path.shp'
]
raster_files = [
'wp_rc.tif', 'wp_kw.tif', 'capwe_rc.tif', 'capwe_mwh.tif',
'npv_rc.tif', 'npv_usd.tif'
]
vector_files = ['GridPts_prj.shp', 'LandPts_prj.shp']
table_files = ['capwe_rc.csv', 'wp_rc.csv', 'npv_rc.csv']
output_files = raster_files + vector_files + table_files
for folder, folder_files in zip(['intermediate', 'output'],
[intermediate_files, output_files]):
folder_path = os.path.join(workspace_dir, folder)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
for file_name in folder_files:
with open(os.path.join(folder_path, file_name), 'w') as open_file:
open_file.write('')
class WaveEnergyUnitTests(unittest.TestCase):
"""Unit tests for the Wave Energy module."""
def setUp(self):
"""Overriding setUp function to create temp workspace directory."""
# this lets us delete the workspace after its done no matter the
# the rest result
self.workspace_dir = tempfile.mkdtemp()
def tearDown(self):
"""Overriding tearDown function to remove temporary directory."""
shutil.rmtree(self.workspace_dir)
def test_pixel_size_based_on_coordinate_transform(self):
"""WaveEnergy: test '_pixel_size_based_on_coordinate_transform' fn."""
from natcap.invest import wave_energy
srs = osr.SpatialReference()
srs.ImportFromEPSG(3157)
# Define a Lat/Long WGS84 projection
epsg_id = 4326
reference = osr.SpatialReference()
reference.ImportFromEPSG(epsg_id)
# Get projection as WKT
latlong_proj = reference.ExportToWkt()
# Set origin to use for setting up geometries / geotransforms
latlong_origin = (-70.5, 42.5)
# Get a point from the clipped data object to use later in helping
# determine proper pixel size
matrix = numpy.array([[1, 1, 1, 1], [1, 1, 1, 1]], dtype=numpy.int32)
raster_path = os.path.join(self.workspace_dir, 'input_raster.tif')
# Create raster to use as testing input
pygeoprocessing.numpy_array_to_raster(
matrix, -1.0, (0.033333, -0.033333), latlong_origin, latlong_proj,
raster_path)
raster_gt = pygeoprocessing.geoprocessing.get_raster_info(raster_path)[
'geotransform']
point = (raster_gt[0], raster_gt[3])
raster_wkt = latlong_proj
# Create a Spatial Reference from the rasters WKT
raster_sr = osr.SpatialReference()
raster_sr.ImportFromWkt(raster_wkt)
# A coordinate transformation to help get the proper pixel size of
# the reprojected raster
coord_trans = utils.create_coordinate_transformer(
raster_sr, srs)
# Call the function to test
result = wave_energy._pixel_size_based_on_coordinate_transform(
raster_path, coord_trans, point)
expected_res = (5553.933063, -1187.370813)
# Compare
for res, exp in zip(result, expected_res):
self.assertAlmostEqual(res, exp, places=2)
def test_count_pixels_groups(self):
"""WaveEnergy: testing '_count_pixels_groups' function."""
from natcap.invest import wave_energy
srs = osr.SpatialReference()
srs.ImportFromEPSG(3157)
projection_wkt = srs.ExportToWkt()
origin = (443723.127327877911739, 4956546.905980412848294)
group_values = [1, 3, 5, 7]
matrix = numpy.array(
[[1, 3, 5, 9], [3, 7, 1, 5], [2, 4, 5, 7]], dtype=numpy.int32)
raster_path = os.path.join(self.workspace_dir, 'pixel_groups.tif')
# Create raster to use for testing input
pygeoprocessing.numpy_array_to_raster(
matrix, -1, (100, -100), origin, projection_wkt,
raster_path)
results = wave_energy._count_pixels_groups(raster_path, group_values)
expected_results = [2, 2, 3, 2]
for res, exp_res in zip(results, expected_results):
self.assertAlmostEqual(res, exp_res, places=6)
def test_calculate_min_distances(self):
"""WaveEnergy: testing '_calculate_min_distances' function."""
from natcap.invest import wave_energy
origin = (443723.127327877911739, 4956546.905980412848294)
pos_x = origin[0]
pos_y = origin[1]
set_one = numpy.array([[pos_x, pos_y], [pos_x, pos_y - 100],
[pos_x, pos_y - 200]])
set_two = numpy.array([[pos_x + 100,
pos_y], [pos_x + 100, pos_y - 100],
[pos_x + 100, pos_y - 200]])
result_dist, result_id = wave_energy._calculate_min_distances(
set_one, set_two)
expected_result_dist = [100, 100, 100]
expected_result_id = [0, 1, 2]
for res, exp_res in zip(result_dist, expected_result_dist):
self.assertEqual(res, exp_res)
for res, exp_res in zip(result_id, expected_result_id):
self.assertEqual(res, exp_res)
def test_clip_vector_by_vector_polygons(self):
"""WaveEnergy: testing clipping polygons from polygons."""
from natcap.invest import wave_energy
from natcap.invest.utils import _assert_vectors_equal
projection_wkt = osr.SRS_WKT_WGS84_LAT_LONG
origin = (-62.00, 44.00)
pos_x = origin[0]
pos_y = origin[1]
fields_aoi = {'id': ogr.OFTInteger}
attrs_aoi = [{'id': 1}]
# Create polygon for the aoi
aoi_polygon = [
Polygon([(pos_x, pos_y), (pos_x + 2, pos_y),
(pos_x + 2, pos_y - 2), (pos_x, pos_y - 2),
(pos_x, pos_y)])
]
aoi_path = os.path.join(self.workspace_dir, 'aoi.shp')
# Create the polygon shapefile
pygeoprocessing.shapely_geometry_to_vector(
aoi_polygon, aoi_path, projection_wkt, 'ESRI Shapefile',
fields=fields_aoi, attribute_list=attrs_aoi)
fields_data = {'id': ogr.OFTInteger, 'myattr': ogr.OFTString}
attrs_data = [{'id': 1, 'myattr': 'hello'}]
# Create polygon to clip with the aoi
data_polygon = [
Polygon([(pos_x - 2, pos_y + 2), (pos_x + 6, pos_y - 2),
(pos_x + 6, pos_y - 4), (pos_x - 2, pos_y - 6),
(pos_x - 2, pos_y + 2)])
]
data_path = os.path.join(self.workspace_dir, 'data.shp')
# Create the polygon shapefile
pygeoprocessing.shapely_geometry_to_vector(
data_polygon, data_path, projection_wkt, 'ESRI Shapefile',
fields=fields_data, attribute_list=attrs_data)
result_path = os.path.join(self.workspace_dir, 'aoi_clipped.shp')
wave_energy._clip_vector_by_vector(
data_path, aoi_path, result_path, projection_wkt,
self.workspace_dir)
fields_expected = {'id': ogr.OFTInteger, 'myattr': ogr.OFTString}
attrs_expected = [{'id': 1, 'myattr': 'hello'}]
# Create polygon to clip with the aoi
expected_polygon = aoi_polygon
expected_path = os.path.join(self.workspace_dir, 'expected.shp')
# Create the polygon shapefile
pygeoprocessing.shapely_geometry_to_vector(
expected_polygon, expected_path, projection_wkt, 'ESRI Shapefile',
fields=fields_expected, attribute_list=attrs_expected)
_assert_vectors_equal(expected_path, result_path)
def test_clip_vector_by_vector_points(self):
"""WaveEnergy: testing clipping points from polygons."""
from natcap.invest import wave_energy
srs = osr.SpatialReference()
srs.ImportFromEPSG(3157)
projection_wkt = srs.ExportToWkt()
origin = (443723.127327877911739, 4956546.905980412848294)
pos_x = origin[0]
pos_y = origin[1]
fields_pt = {'id': ogr.OFTInteger, 'myattr': ogr.OFTString}
attrs_one = [{
'id': 1,
'myattr': 'hello'
}, {
'id': 2,
'myattr': 'bye'
}, {
'id': 3,
'myattr': 'highbye'
}]
fields_poly = {'id': ogr.OFTInteger}
attrs_poly = [{'id': 1}]
# Create geometry for the points, which will get clipped
geom_one = [
Point(pos_x + 20, pos_y - 20),
Point(pos_x + 40, pos_y - 20),
Point(pos_x + 100, pos_y - 20)
]
# Create geometry for the polygons, which will be used to clip
geom_two = [
Polygon([(pos_x, pos_y), (pos_x + 60, pos_y),
(pos_x + 60, pos_y - 60), (pos_x, pos_y - 60),
(pos_x, pos_y)])
]
shape_to_clip_path = os.path.join(
self.workspace_dir, 'shape_to_clip.shp')
# Create the point shapefile
pygeoprocessing.shapely_geometry_to_vector(
geom_one, shape_to_clip_path, projection_wkt, 'ESRI Shapefile',
fields=fields_pt, attribute_list=attrs_one,
ogr_geom_type=ogr.wkbPoint)
binding_shape_path = os.path.join(
self.workspace_dir, 'binding_shape.shp')
# Create the polygon shapefile
pygeoprocessing.shapely_geometry_to_vector(
geom_two, binding_shape_path, projection_wkt, 'ESRI Shapefile',
fields=fields_poly, attribute_list=attrs_poly)
output_path = os.path.join(self.workspace_dir, 'vector.shp')
# Call the function to test
wave_energy._clip_vector_by_vector(
shape_to_clip_path, binding_shape_path, output_path,
projection_wkt, self.workspace_dir)
# Create the expected point shapefile
fields_pt = {'id': ogr.OFTInteger, 'myattr': ogr.OFTString}
attrs_one = [{'id': 1, 'myattr': 'hello'}, {'id': 2, 'myattr': 'bye'}]
geom_three = [
Point(pos_x + 20, pos_y - 20),
Point(pos_x + 40, pos_y - 20)
]
# Need to save the expected shapefile in a sub folder since it must
# have the same layer name / filename as what it will be compared
# against.
if not os.path.isdir(os.path.join(self.workspace_dir, 'exp_vector')):
os.mkdir(os.path.join(self.workspace_dir, 'exp_vector'))
expected_path = os.path.join(
self.workspace_dir, 'exp_vector', 'vector.shp')
pygeoprocessing.shapely_geometry_to_vector(
geom_three, expected_path, projection_wkt, 'ESRI Shapefile',
fields=fields_pt, attribute_list=attrs_one,
ogr_geom_type=ogr.wkbPoint)
WaveEnergyRegressionTests._assert_point_vectors_equal(
output_path, expected_path)
def test_clip_vector_by_vector_no_intersection(self):
"""WaveEnergy: testing '_clip_vector_by_vector' w/ no intersection."""
from natcap.invest import wave_energy
srs = osr.SpatialReference()
srs.ImportFromEPSG(3157)
projection_wkt = srs.ExportToWkt()
origin = (443723.127327877911739, 4956546.905980412848294)
pos_x = origin[0]
pos_y = origin[1]
fields_pt = {'id': ogr.OFTInteger, 'myattr': ogr.OFTString}
attrs_one = [{'id': 1, 'myattr': 'hello'}]
fields_poly = {'id': ogr.OFTInteger}
attrs_poly = [{'id': 1}]
# Create geometry for the points, which will get clipped
geom_one = [Point(pos_x + 220, pos_y - 220)]
# Create geometry for the polygons, which will be used to clip
geom_two = [
Polygon([(pos_x, pos_y), (pos_x + 60, pos_y),
(pos_x + 60, pos_y - 60), (pos_x, pos_y - 60),
(pos_x, pos_y)])
]
shape_to_clip_path = os.path.join(
self.workspace_dir, 'shape_to_clip.shp')
# Create the point shapefile
pygeoprocessing.shapely_geometry_to_vector(
geom_one, shape_to_clip_path, projection_wkt, 'ESRI Shapefile',
fields=fields_pt, attribute_list=attrs_one,
ogr_geom_type=ogr.wkbPoint)
binding_shape_path = os.path.join(
self.workspace_dir, 'binding_shape.shp')
# Create the polygon shapefile
pygeoprocessing.shapely_geometry_to_vector(
geom_two, binding_shape_path, projection_wkt, 'ESRI Shapefile',
fields=fields_poly, attribute_list=attrs_poly)
output_path = os.path.join(self.workspace_dir, 'vector.shp')
# Call the function to test
self.assertRaises(wave_energy.IntersectionError,
wave_energy._clip_vector_by_vector,
shape_to_clip_path,
binding_shape_path,
output_path,
projection_wkt,
self.workspace_dir)
def test_binary_wave_data_to_dict(self):
"""WaveEnergy: testing '_binary_wave_data_to_dict' function."""
from natcap.invest import wave_energy
wave_file_path = os.path.join(
REGRESSION_DATA, 'example_ww3_binary.bin')
result = wave_energy._binary_wave_data_to_dict(wave_file_path)
exp_res = {
'periods': numpy.array([.375, 1, 1.5, 2.0], dtype=numpy.float32),
'heights': numpy.array([.375, 1], dtype=numpy.float32),
'bin_matrix': {
(102, 370):
numpy.array(
[[0, 0, 0, 0], [0, 9, 3, 30]], dtype=numpy.float32),
(102, 371):
numpy.array(
[[0, 0, 0, 0], [0, 0, 3, 27]], dtype=numpy.float32)
}
}
for key in ['periods', 'heights']:
numpy.testing.assert_array_equal(result[key], exp_res[key])
for key in [(102, 370), (102, 371)]:
numpy.testing.assert_array_equal(
result['bin_matrix'][key], exp_res['bin_matrix'][key])
class WaveEnergyRegressionTests(unittest.TestCase):
"""Regression tests for the Wave Energy module."""
def setUp(self):
"""Overriding setUp function to create temp workspace directory."""
# this lets us delete the workspace after its done no matter the
# the rest result
self.workspace_dir = tempfile.mkdtemp()
def tearDown(self):
"""Overriding tearDown function to remove temporary directory."""
shutil.rmtree(self.workspace_dir)
@staticmethod
def generate_base_args(workspace_dir):
"""Generate an args list that is consistent across regression tests."""
args = {
'workspace_dir': workspace_dir,
'wave_base_data_path': os.path.join(SAMPLE_DATA, 'WaveData'),
'analysis_area': 'westcoast',
'machine_perf_path': os.path.join(
SAMPLE_DATA, 'Machine_Pelamis_Performance.csv'),
'machine_param_path': os.path.join(
SAMPLE_DATA, 'Machine_Pelamis_Parameter.csv'),
'dem_path': os.path.join(SAMPLE_DATA, 'resampled_global_dem.tif'),
'n_workers': -1
}
return args
def test_valuation(self):
"""WaveEnergy: testing valuation component."""
from natcap.invest import wave_energy
args = WaveEnergyRegressionTests.generate_base_args(self.workspace_dir)
args['aoi_path'] = os.path.join(SAMPLE_DATA, 'AOI_WCVI.shp')
args['valuation_container'] = True
args['land_gridPts_path'] = os.path.join(
SAMPLE_DATA, 'LandGridPts_WCVI.csv')
args['machine_econ_path'] = os.path.join(
SAMPLE_DATA, 'Machine_Pelamis_Economic.csv')
args['number_of_machines'] = 28
# Testing if intermediate/output were overwritten
_make_empty_files(args['workspace_dir'])
wave_energy.execute(args)
raster_results = [
'wp_rc.tif', 'wp_kw.tif', 'capwe_rc.tif', 'capwe_mwh.tif',
'npv_rc.tif', 'npv_usd.tif'
]
for raster_path in raster_results:
model_array = pygeoprocessing.raster_to_numpy_array(
os.path.join(args['workspace_dir'], 'output', raster_path))
reg_array = pygeoprocessing.raster_to_numpy_array(
os.path.join(REGRESSION_DATA, 'valuation', raster_path))
numpy.testing.assert_allclose(model_array, reg_array)
vector_results = ['GridPts_prj.shp', 'LandPts_prj.shp']
for vector_path in vector_results:
WaveEnergyRegressionTests._assert_point_vectors_equal(
os.path.join(args['workspace_dir'], 'output', vector_path),
os.path.join(REGRESSION_DATA, 'valuation', vector_path))
table_results = ['capwe_rc.csv', 'wp_rc.csv', 'npv_rc.csv']
for table_path in table_results:
model_df = pandas.read_csv(
os.path.join(args['workspace_dir'], 'output', table_path))
reg_df = pandas.read_csv(
os.path.join(REGRESSION_DATA, 'valuation', table_path))
pandas.testing.assert_frame_equal(model_df, reg_df)
def test_aoi_no_val(self):
"""WaveEnergy: test Biophysical component w AOI but w/o valuation."""
from natcap.invest import wave_energy
args = WaveEnergyRegressionTests.generate_base_args(self.workspace_dir)
args['aoi_path'] = os.path.join(SAMPLE_DATA, 'AOI_WCVI.shp')
wave_energy.execute(args)
raster_results = [
'wp_rc.tif', 'wp_kw.tif', 'capwe_rc.tif', 'capwe_mwh.tif'
]
for raster_path in raster_results:
model_array = pygeoprocessing.raster_to_numpy_array(
os.path.join(args['workspace_dir'], 'output', raster_path))
reg_array = pygeoprocessing.raster_to_numpy_array(
os.path.join(REGRESSION_DATA, 'aoi', raster_path))
numpy.testing.assert_allclose(model_array, reg_array)
table_results = ['capwe_rc.csv', 'wp_rc.csv']
for table_path in table_results:
model_df = pandas.read_csv(
os.path.join(args['workspace_dir'], 'output', table_path))
reg_df = pandas.read_csv(
os.path.join(REGRESSION_DATA, 'aoi', table_path))
pandas.testing.assert_frame_equal(model_df, reg_df)
def test_no_aoi_or_val(self):
"""WaveEnergy: testing Biophysical component w/o AOI or valuation."""
from natcap.invest import wave_energy
args = WaveEnergyRegressionTests.generate_base_args(self.workspace_dir)
wave_energy.execute(args)
raster_results = [
'wp_rc.tif', 'wp_kw.tif', 'capwe_rc.tif', 'capwe_mwh.tif'
]
for raster_path in raster_results:
model_array = pygeoprocessing.raster_to_numpy_array(
os.path.join(args['workspace_dir'], 'output', raster_path))
reg_array = pygeoprocessing.raster_to_numpy_array(
os.path.join(REGRESSION_DATA, 'noaoi', raster_path))
numpy.testing.assert_allclose(model_array, reg_array)
table_results = ['capwe_rc.csv', 'wp_rc.csv']
for table_path in table_results:
model_df = pandas.read_csv(
os.path.join(args['workspace_dir'], 'output', table_path))
reg_df = pandas.read_csv(
os.path.join(REGRESSION_DATA, 'noaoi', table_path))
pandas.testing.assert_frame_equal(model_df, reg_df)
def test_valuation_suffix(self):
"""WaveEnergy: testing suffix through Valuation."""
from natcap.invest import wave_energy
args = WaveEnergyRegressionTests.generate_base_args(self.workspace_dir)
args['aoi_path'] = os.path.join(SAMPLE_DATA, 'AOI_WCVI.shp')
args['valuation_container'] = True
args['land_gridPts_path'] = os.path.join(
SAMPLE_DATA, 'LandGridPts_WCVI.csv')
args['machine_econ_path'] = os.path.join(
SAMPLE_DATA, 'Machine_Pelamis_Economic.csv')
args['number_of_machines'] = 28
args['results_suffix'] = 'val'
wave_energy.execute(args)
raster_results = [
'wp_rc_val.tif', 'wp_kw_val.tif', 'capwe_rc_val.tif',
'capwe_mwh_val.tif', 'npv_rc_val.tif', 'npv_usd_val.tif'
]
for raster_path in raster_results:
self.assertTrue(
os.path.exists(
os.path.join(
args['workspace_dir'], 'output', raster_path)))
vector_results = ['GridPts_prj_val.shp', 'LandPts_prj_val.shp']
for vector_path in vector_results:
self.assertTrue(
os.path.exists(
os.path.join(
args['workspace_dir'], 'output', vector_path)))
table_results = ['capwe_rc_val.csv', 'wp_rc_val.csv', 'npv_rc_val.csv']
for table_path in table_results:
self.assertTrue(
os.path.exists(
os.path.join(args['workspace_dir'], 'output', table_path)))
@staticmethod
def _assert_point_vectors_equal(a_vector_path, b_vector_path):
"""Assert that two point geometries in the vectors are equal.
Args:
a_vector_path (str): a path to an OGR vector.
b_vector_path (str): a path to an OGR vector.
Returns:
None.
Raises:
AssertionError when the two point geometries are not equal up to
desired precision (default is 6).
"""
a_shape = gdal.OpenEx(a_vector_path, gdal.OF_VECTOR)
a_layer = a_shape.GetLayer(0)
a_feat = a_layer.GetNextFeature()
b_shape = gdal.OpenEx(b_vector_path, gdal.OF_VECTOR)
b_layer = b_shape.GetLayer(0)
b_feat = b_layer.GetNextFeature()
while a_feat is not None:
# Get coordinates from point geometry and store them in a list
a_geom = a_feat.GetGeometryRef()
a_geom_list = re.findall(r'\d+\.\d+', a_geom.ExportToWkt())
a_geom_list = [float(x) for x in a_geom_list]
b_geom = b_feat.GetGeometryRef()
b_geom_list = re.findall(r'\d+\.\d+', b_geom.ExportToWkt())
b_geom_list = [float(x) for x in b_geom_list]
try:
numpy.testing.assert_allclose(
a_geom_list, b_geom_list, rtol=0, atol=1e-6)
except AssertionError:
a_feature_fid = a_feat.GetFID()
b_feature_fid = b_feat.GetFID()
raise AssertionError('Geometries are not equal in feature %s, '
'regression feature %s in layer 0' %
(a_feature_fid, b_feature_fid))
a_feat = None
b_feat = None
a_feat = a_layer.GetNextFeature()
b_feat = b_layer.GetNextFeature()
a_shape = None
b_shape = None
class WaveEnergyValidateTests(unittest.TestCase):
"""Wave Energy Validate: tests for MODEL_SPEC and validate."""
def setUp(self):
"""Set up list of required keys."""
self.base_required_keys = [
'workspace_dir',
'machine_param_path',
'wave_base_data_path',
'analysis_area',
'machine_perf_path',
'dem_path',
]
def test_missing_required_keys(self):
"""WaveEnergy: testing missing required keys from args."""
from natcap.invest import wave_energy
from natcap.invest import validation
args = {}
validation_error_list = wave_energy.validate(args)
invalid_keys = validation.get_invalid_keys(validation_error_list)
expected_missing_keys = set(self.base_required_keys)
self.assertEqual(invalid_keys, expected_missing_keys)
def test_missing_required_keys_if_valuation(self):
"""WaveEnergy: testing missing required keys given valuation."""
from natcap.invest import wave_energy
from natcap.invest import validation
args = {'valuation_container': True}
validation_error_list = wave_energy.validate(args)
invalid_keys = validation.get_invalid_keys(validation_error_list)
expected_missing_keys = set(
self.base_required_keys +
['number_of_machines', 'machine_econ_path', 'land_gridPts_path'])
self.assertEqual(invalid_keys, expected_missing_keys)
def test_incorrect_analysis_area_value(self):
"""WaveEnergy: testing incorrect analysis_area value."""
from natcap.invest import wave_energy, validation
args = {}
args['analysis_area'] = 'Incorrect Analysis Area'
validation_error_list = wave_energy.validate(args)
expected_message = validation.MESSAGES['INVALID_OPTION'].format(
option_list=sorted([
"westcoast", "eastcoast", "northsea4", "northsea10",
"australia", "global"]))
actual_messages = ''
for keys, error_strings in validation_error_list:
actual_messages += error_strings
self.assertTrue(expected_message in actual_messages)
def test_validate_keys_missing_values(self):
"""WaveEnergy: testing validate when keys are missing values."""
from natcap.invest import wave_energy, validation
args = {}
args['wave_base_data_path'] = None
args['dem_path'] = None
validation_error_list = wave_energy.validate(args)
expected_error = (
['dem_path', 'wave_base_data_path'], validation.MESSAGES['MISSING_VALUE'])
self.assertTrue(expected_error in validation_error_list)