mirror of https://github.com/YunYouJun/valaxy
docs: Update markdown.md (#330)
This commit is contained in:
parent
b43f758e76
commit
7823e1d1b4
|
@ -439,7 +439,9 @@ This is helpful if source language cannot be inferred from your file extension.
|
|||
如果无法从文件扩展名推断源语言,这将很有帮助。
|
||||
:::
|
||||
|
||||
## Code Groups
|
||||
## Code Groups {lang="en"}
|
||||
|
||||
## 代码分组 {lang="zh-CN"}
|
||||
|
||||
::: en
|
||||
You can group multiple code blocks like this:
|
||||
|
@ -563,7 +565,9 @@ You can also [import snippets](#import-code-snippets) in code groups:
|
|||
|
||||
:::
|
||||
|
||||
## Container
|
||||
## Container {lang="en"}
|
||||
|
||||
## 容器 {lang="zh-CN"}
|
||||
|
||||
::: zh-CN
|
||||
|
||||
|
@ -635,19 +639,10 @@ More information about $\KaTeX$ examples can be found [here](/examples/katex).
|
|||
:::
|
||||
|
||||
```md
|
||||
::: en
|
||||
When $a \ne 0$, there are two solutions to $(ax^2 + bx + c = 0)$ and they are
|
||||
$$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$
|
||||
|
||||
**Maxwell's equations:**
|
||||
:::
|
||||
|
||||
::: zh-CN
|
||||
当 $a \ne 0$时,$(ax^2 + bx + c = 0)$ 有两个解,他们是
|
||||
$$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$
|
||||
|
||||
**麦克斯韦方程:**
|
||||
:::
|
||||
|
||||
| equation | description |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------- |
|
||||
|
@ -658,19 +653,16 @@ $$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$
|
|||
|
||||
::: en
|
||||
**Output**
|
||||
:::
|
||||
|
||||
::: zh-CN
|
||||
**输出**
|
||||
:::
|
||||
|
||||
::: en
|
||||
When $a \ne 0$, there are two solutions to $(ax^2 + bx + c = 0)$ and they are
|
||||
$$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$
|
||||
|
||||
**Maxwell's equations:**
|
||||
:::
|
||||
|
||||
::: zh-CN
|
||||
**输出**
|
||||
:::
|
||||
|
||||
::: zh-CN
|
||||
当 $a \ne 0$时,$(ax^2 + bx + c = 0)$ 有两个解,他们是
|
||||
$$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$
|
||||
|
|
Loading…
Reference in New Issue