netrans/docs/html/_modules/import_model.html

443 lines
38 KiB
HTML

<!DOCTYPE html>
<html lang="zh" data-content_root="../">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>import_model &#8212; netrans 0.1 文档</title>
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=5ecbeea2" />
<link rel="stylesheet" type="text/css" href="../_static/basic.css?v=b08954a9" />
<link rel="stylesheet" type="text/css" href="../_static/alabaster.css?v=27fed22d" />
<script src="../_static/documentation_options.js?v=52efc512"></script>
<script src="../_static/doctools.js?v=9bcbadda"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<link rel="index" title="索引" href="../genindex.html" />
<link rel="search" title="搜索" href="../search.html" />
<link rel="stylesheet" href="../_static/custom.css" type="text/css" />
</head><body>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<h1>import_model 源代码</h1><div class="highlight"><pre>
<span></span><span class="kn">import</span><span class="w"> </span><span class="nn">os</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">sys</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">subprocess</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">utils</span><span class="w"> </span><span class="kn">import</span> <span class="n">check_path</span><span class="p">,</span> <span class="n">AttributeCopier</span><span class="p">,</span> <span class="n">create_cls</span>
<div class="viewcode-block" id="check_status">
<a class="viewcode-back" href="../import_model.html#import_model.check_status">[文档]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">check_status</span><span class="p">(</span><span class="n">result</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;解析命令执行情况</span>
<span class="sd"> Args:</span>
<span class="sd"> result (return of subprocrss.run): subprocess.run的返回值</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">result</span><span class="o">.</span><span class="n">returncode</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;</span><span class="se">\033</span><span class="s2">[31m LOAD MODEL SUCCESS </span><span class="se">\033</span><span class="s2">[0m&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="se">\033</span><span class="s2">[31m ERROR: </span><span class="si">{</span><span class="n">result</span><span class="o">.</span><span class="n">stderr</span><span class="si">}</span><span class="s2"> </span><span class="se">\033</span><span class="s2">[0m&quot;</span><span class="p">)</span></div>
<div class="viewcode-block" id="import_caffe_network">
<a class="viewcode-back" href="../import_model.html#import_model.import_caffe_network">[文档]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">import_caffe_network</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">netrans_path</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;导入 caffe 模型</span>
<span class="sd"> Args:</span>
<span class="sd"> name (str): 模型名字</span>
<span class="sd"> netrans_path (str): 模型路径</span>
<span class="sd"> Returns:</span>
<span class="sd"> cmd (str): 生成的pnnacc 命令行, 被subprocesses执行</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># 定义转换工具的路径</span>
<span class="n">convert_caffe</span> <span class="o">=</span><span class="n">netrans_path</span> <span class="o">+</span> <span class="s2">&quot; import caffe&quot;</span>
<span class="c1"># 定义模型文件路径</span>
<span class="n">model_json_path</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.json&quot;</span>
<span class="n">model_data_path</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.data&quot;</span>
<span class="n">model_prototxt_path</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.prototxt&quot;</span>
<span class="n">model_caffemodel_path</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.caffemodel&quot;</span>
<span class="c1"># 打印转换信息</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;=========== Converting </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2"> Caffe model ===========&quot;</span><span class="p">)</span>
<span class="c1"># 构建转换命令</span>
<span class="k">if</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">isfile</span><span class="p">(</span><span class="n">model_caffemodel_path</span><span class="p">):</span>
<span class="n">cmd</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">convert_caffe</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --model </span><span class="si">{</span><span class="n">model_prototxt_path</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --weights </span><span class="si">{</span><span class="n">model_caffemodel_path</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --output-model </span><span class="si">{</span><span class="n">model_json_path</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --output-data </span><span class="si">{</span><span class="n">model_data_path</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="k">else</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;=========== fake Caffe model data file =============&quot;</span><span class="p">)</span>
<span class="n">cmd</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">convert_caffe</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --model </span><span class="si">{</span><span class="n">model_prototxt_path</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --output-model </span><span class="si">{</span><span class="n">model_json_path</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --output-data </span><span class="si">{</span><span class="n">model_data_path</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="c1"># 执行转换命令</span>
<span class="c1"># print(cmd)</span>
<span class="c1"># os.system(cmd)</span>
<span class="k">return</span> <span class="n">cmd</span></div>
<div class="viewcode-block" id="import_tensorflow_network">
<a class="viewcode-back" href="../import_model.html#import_model.import_tensorflow_network">[文档]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">import_tensorflow_network</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">netrans_path</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;导入 tensorflow 模型</span>
<span class="sd"> Args:</span>
<span class="sd"> name (str): 模型名字</span>
<span class="sd"> netrans_path (str): 模型路径</span>
<span class="sd"> Returns:</span>
<span class="sd"> cmd (str): 生成的pnnacc 命令行, 被subprocesses执行</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># 定义转换工具的命令</span>
<span class="n">convertf_cmd</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">netrans_path</span><span class="si">}</span><span class="s2"> import tensorflow&quot;</span>
<span class="c1"># 打印转换信息</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;=========== Converting </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2"> Tensorflow model ===========&quot;</span><span class="p">)</span>
<span class="c1"># 读取 inputs_outputs.txt 文件中的参数</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="s1">&#39;inputs_outputs.txt&#39;</span><span class="p">,</span> <span class="s1">&#39;r&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
<span class="n">inputs_outputs_params</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="n">read</span><span class="p">()</span><span class="o">.</span><span class="n">strip</span><span class="p">()</span>
<span class="c1"># 构建转换命令</span>
<span class="n">cmd</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">convertf_cmd</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --model </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.pb </span><span class="se">\</span>
<span class="s2"> --output-data </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.data </span><span class="se">\</span>
<span class="s2"> --output-model </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.json </span><span class="se">\</span>
<span class="s2"> </span><span class="si">{</span><span class="n">inputs_outputs_params</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="c1"># 执行转换命令</span>
<span class="c1"># print(cmd)</span>
<span class="k">return</span> <span class="n">cmd</span></div>
<span class="c1"># result = subprocess.run(cmd, shell=True, capture_output=True, text=True)</span>
<span class="c1"># 检查执行结果</span>
<span class="c1"># check_status(result)</span>
<div class="viewcode-block" id="import_onnx_network">
<a class="viewcode-back" href="../import_model.html#import_model.import_onnx_network">[文档]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">import_onnx_network</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">netrans_path</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;导入 onnx 模型</span>
<span class="sd"> Args:</span>
<span class="sd"> name (str): 模型名字</span>
<span class="sd"> netrans_path (str): 模型路径</span>
<span class="sd"> Returns:</span>
<span class="sd"> cmd (str): 生成的pnnacc 命令行, 被subprocesses执行</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># 定义转换工具的命令</span>
<span class="n">convert_onnx_cmd</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">netrans_path</span><span class="si">}</span><span class="s2"> import onnx&quot;</span>
<span class="c1"># 打印转换信息</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;=========== Converting </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2"> ONNX model ===========&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">exists</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">_outputs.txt&quot;</span><span class="p">):</span>
<span class="n">output_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">getcwd</span><span class="p">(),</span> <span class="n">name</span><span class="o">+</span><span class="s2">&quot;_outputs.txt&quot;</span><span class="p">)</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">output_path</span><span class="p">,</span> <span class="s1">&#39;r&#39;</span><span class="p">,</span> <span class="n">encoding</span><span class="o">=</span><span class="s1">&#39;utf-8&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">file</span><span class="p">:</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">file</span><span class="o">.</span><span class="n">readline</span><span class="p">()</span><span class="o">.</span><span class="n">strip</span><span class="p">())</span>
<span class="n">cmd</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">convert_onnx_cmd</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --model </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.onnx </span><span class="se">\</span>
<span class="s2"> --output-model </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.json </span><span class="se">\</span>
<span class="s2"> --output-data </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.data </span><span class="se">\</span>
<span class="s2"> --outputs &#39;</span><span class="si">{</span><span class="n">outputs</span><span class="si">}</span><span class="s2">&#39;&quot;</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># 构建转换命令</span>
<span class="n">cmd</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">convert_onnx_cmd</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --model </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.onnx </span><span class="se">\</span>
<span class="s2"> --output-model </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.json </span><span class="se">\</span>
<span class="s2"> --output-data </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.data&quot;</span>
<span class="c1"># 执行转换命令</span>
<span class="c1"># print(cmd)</span>
<span class="k">return</span> <span class="n">cmd</span></div>
<span class="c1"># result = subprocess.run(cmd, shell=True, capture_output=True, text=True)</span>
<span class="c1"># 检查执行结果</span>
<span class="c1"># check_status(result)</span>
<span class="c1">####### TFLITE</span>
<div class="viewcode-block" id="import_tflite_network">
<a class="viewcode-back" href="../import_model.html#import_model.import_tflite_network">[文档]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">import_tflite_network</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">netrans_path</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;导入 tflite 模型</span>
<span class="sd"> Args:</span>
<span class="sd"> name (str): 模型名字</span>
<span class="sd"> netrans_path (str): 模型路径</span>
<span class="sd"> Returns:</span>
<span class="sd"> cmd (str): 生成的pnnacc 命令行, 被subprocesses执行</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># 定义转换工具的路径或命令 </span>
<span class="n">convert_tflite</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">netrans_path</span><span class="si">}</span><span class="s2"> import tflite&quot;</span>
<span class="c1"># 定义模型文件路径</span>
<span class="n">model_json_path</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.json&quot;</span>
<span class="n">model_data_path</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.data&quot;</span>
<span class="n">model_tflite_path</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.tflite&quot;</span>
<span class="c1"># 打印转换信息</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;=========== Converting </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2"> TFLite model ===========&quot;</span><span class="p">)</span>
<span class="c1"># 构建转换命令</span>
<span class="n">cmd</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">convert_tflite</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --model </span><span class="si">{</span><span class="n">model_tflite_path</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --output-model </span><span class="si">{</span><span class="n">model_json_path</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --output-data </span><span class="si">{</span><span class="n">model_data_path</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="c1"># 执行转换命令</span>
<span class="c1"># print(cmd)</span>
<span class="k">return</span> <span class="n">cmd</span></div>
<span class="c1"># result = subprocess.run(cmd, shell=True, capture_output=True, text=True)</span>
<span class="c1"># 检查执行结果</span>
<span class="c1"># check_status(result)</span>
<div class="viewcode-block" id="import_darknet_network">
<a class="viewcode-back" href="../import_model.html#import_model.import_darknet_network">[文档]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">import_darknet_network</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">netrans_path</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;导入 darknet 模型</span>
<span class="sd"> Args:</span>
<span class="sd"> name (str): 模型名字</span>
<span class="sd"> netrans_path (str): 模型路径</span>
<span class="sd"> Returns:</span>
<span class="sd"> cmd (str): 生成的pnnacc 命令行, 被subprocesses执行</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># 定义转换工具的命令</span>
<span class="n">convert_darknet_cmd</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">netrans_path</span><span class="si">}</span><span class="s2"> import darknet&quot;</span>
<span class="c1"># 打印转换信息</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;=========== Converting </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2"> darknet model ===========&quot;</span><span class="p">)</span>
<span class="c1"># 构建转换命令</span>
<span class="n">cmd</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">convert_darknet_cmd</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --model </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.cfg </span><span class="se">\</span>
<span class="s2"> --weight </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.weights </span><span class="se">\</span>
<span class="s2"> --output-model </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.json </span><span class="se">\</span>
<span class="s2"> --output-data </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.data&quot;</span>
<span class="c1"># 执行转换命令</span>
<span class="c1"># print(cmd)</span>
<span class="k">return</span> <span class="n">cmd</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">subprocess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">cmd</span><span class="p">,</span> <span class="n">shell</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">capture_output</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">text</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="c1"># 检查执行结果</span>
<span class="n">check_status</span><span class="p">(</span><span class="n">result</span><span class="p">)</span></div>
<div class="viewcode-block" id="import_pytorch_network">
<a class="viewcode-back" href="../import_model.html#import_model.import_pytorch_network">[文档]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">import_pytorch_network</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">netrans_path</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;导入 pytorch 模型</span>
<span class="sd"> Args:</span>
<span class="sd"> name (str): 模型名字</span>
<span class="sd"> netrans_path (str): 模型路径</span>
<span class="sd"> Returns:</span>
<span class="sd"> cmd (str): 生成的pnnacc 命令行, 被subprocesses执行</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># 定义转换工具的命令</span>
<span class="n">convert_pytorch_cmd</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">netrans_path</span><span class="si">}</span><span class="s2"> import pytorch&quot;</span>
<span class="c1"># 打印转换信息</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;=========== Converting </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2"> pytorch model ===========&quot;</span><span class="p">)</span>
<span class="c1"># 读取 input_size.txt 文件中的参数</span>
<span class="k">try</span><span class="p">:</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="s1">&#39;input_size.txt&#39;</span><span class="p">,</span> <span class="s1">&#39;r&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">file</span><span class="p">:</span>
<span class="n">input_size_params</span> <span class="o">=</span> <span class="s1">&#39; &#39;</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">file</span><span class="o">.</span><span class="n">readlines</span><span class="p">())</span>
<span class="k">except</span> <span class="ne">FileNotFoundError</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Error: input_size.txt not found.&quot;</span><span class="p">)</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="c1"># 构建转换命令</span>
<span class="n">cmd</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">convert_pytorch_cmd</span><span class="si">}</span><span class="s2"> </span><span class="se">\</span>
<span class="s2"> --model </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.pt </span><span class="se">\</span>
<span class="s2"> --output-model </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.json </span><span class="se">\</span>
<span class="s2"> --output-data </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.data </span><span class="se">\</span>
<span class="s2"> </span><span class="si">{</span><span class="n">input_size_params</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="c1"># 执行转换命令</span>
<span class="c1"># print(cmd)</span>
<span class="k">return</span> <span class="n">cmd</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">subprocess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">cmd</span><span class="p">,</span> <span class="n">shell</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">capture_output</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">text</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="c1"># 检查执行结果</span>
<span class="n">check_status</span><span class="p">(</span><span class="n">result</span><span class="p">)</span></div>
<span class="c1"># 使用示例</span>
<span class="c1"># import_tensorflow_network(&#39;model_name&#39;, &#39;/path/to/NETRANS_PATH&#39;)</span>
<div class="viewcode-block" id="ImportModel">
<a class="viewcode-back" href="../import_model.html#import_model.ImportModel">[文档]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">ImportModel</span><span class="p">(</span><span class="n">AttributeCopier</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;从实例化的 Netrans 中解析模型参数,并基于 pnnacc 导入模型</span>
<span class="sd"> Args:</span>
<span class="sd"> Netrans (class): 实例化的Netrans类,包含 模型信息 和 Netrans 信息</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">source_obj</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;从实例化的 Netrans 中解析模型参数</span>
<span class="sd"> Args:</span>
<span class="sd"> source_obj (class): 实例化的Netrans类,包含 模型信息 和 Netrans 信息</span>
<span class="sd"> </span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">source_obj</span><span class="p">)</span>
<span class="c1"># print(source_obj.__dict__)</span>
<span class="nd">@check_path</span>
<span class="k">def</span><span class="w"> </span><span class="nf">import_network</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;基于 pnnacc 导入模型</span>
<span class="sd"> Raises:</span>
<span class="sd"> FileExistsError: 如果不存在模型文件则会报错 FileExistsError</span>
<span class="sd"> RuntimeError: 如果执行导入失败则会报 RuntimeError</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">verbose</span> <span class="ow">is</span> <span class="kc">True</span> <span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;begin load model&quot;</span><span class="p">)</span>
<span class="c1"># print(self.model_path)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">getcwd</span><span class="p">())</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">model_name</span><span class="si">}</span><span class="s2">.weights&quot;</span><span class="p">)</span>
<span class="n">name</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model_name</span>
<span class="n">netrans_path</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">netrans</span>
<span class="k">if</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">isfile</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.prototxt&quot;</span><span class="p">):</span>
<span class="n">cmd</span> <span class="o">=</span> <span class="n">import_caffe_network</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">netrans_path</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">isfile</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.pb&quot;</span><span class="p">):</span>
<span class="n">cmd</span> <span class="o">=</span> <span class="n">import_tensorflow_network</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">netrans_path</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">isfile</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.onnx&quot;</span><span class="p">):</span>
<span class="n">cmd</span> <span class="o">=</span> <span class="n">import_onnx_network</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">netrans_path</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">isfile</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.tflite&quot;</span><span class="p">):</span>
<span class="n">cmd</span> <span class="o">=</span> <span class="n">import_tflite_network</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">netrans_path</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">isfile</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.weights&quot;</span><span class="p">):</span>
<span class="n">cmd</span> <span class="o">=</span> <span class="n">import_darknet_network</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">netrans_path</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">isfile</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">.pt&quot;</span><span class="p">):</span>
<span class="n">cmd</span> <span class="o">=</span> <span class="n">import_pytorch_network</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">netrans_path</span><span class="p">)</span>
<span class="k">else</span> <span class="p">:</span>
<span class="k">raise</span> <span class="ne">FileExistsError</span><span class="p">(</span><span class="s2">&quot;Can not find suitable model files&quot;</span><span class="p">)</span>
<span class="k">try</span> <span class="p">:</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">subprocess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">cmd</span><span class="p">,</span> <span class="n">shell</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">capture_output</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">text</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">except</span> <span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s2">&quot;load model failed&quot;</span><span class="p">)</span>
<span class="c1"># 检查执行结果</span>
<span class="n">check_status</span><span class="p">(</span><span class="n">result</span><span class="p">)</span></div>
<span class="c1"># os.chdir(&quot;..&quot;) </span>
<span class="c1"># def main():</span>
<span class="c1"># if len(sys.argv) != 2 :</span>
<span class="c1"># print(&quot;Input a network&quot;)</span>
<span class="c1"># sys.exit(-1)</span>
<span class="c1"># network_name = sys.argv[1]</span>
<span class="c1"># # check_env(network_name)</span>
<span class="c1"># netrans_path = os.environ[&#39;NETRANS_PATH&#39;]</span>
<span class="c1"># # netrans = os.path.join(netrans_path, &#39;pnnacc&#39;)</span>
<span class="c1"># clas = create_cls(netrans_path, network_name,verbose=False)</span>
<span class="c1"># func = ImportModel(clas)</span>
<span class="c1"># func.import_network()</span>
<span class="c1"># if __name__ == &quot;__main__&quot;:</span>
<span class="c1"># main() </span>
</pre></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="Main">
<div class="sphinxsidebarwrapper">
<h1 class="logo"><a href="../index.html">netrans</a></h1>
<search id="searchbox" style="display: none" role="search">
<div class="searchformwrapper">
<form class="search" action="../search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false" placeholder="Search"/>
<input type="submit" value="提交" />
</form>
</div>
</search>
<script>document.getElementById('searchbox').style.display = "block"</script><h3>导航</h3>
<p class="caption" role="heading"><span class="caption-text">Contents:</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../quick_start_guide.html">快速入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../netrans_cli.html">netrans_cli 使用</a></li>
<li class="toctree-l1"><a class="reference internal" href="../netrans_py.html">netrans_py 使用</a></li>
<li class="toctree-l1"><a class="reference internal" href="../appendix.html">附录</a></li>
</ul>
<div class="relations">
<h3>Related Topics</h3>
<ul>
<li><a href="../index.html">Documentation overview</a><ul>
<li><a href="index.html">模块代码</a><ul>
</ul></li>
</ul></li>
</ul>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="footer">
&#169;2025, ccyh.
|
Powered by <a href="https://www.sphinx-doc.org/">Sphinx 8.2.3</a>
&amp; <a href="https://alabaster.readthedocs.io">Alabaster 1.0.0</a>
</div>
</body>
</html>