PaddleOCR/tools/tmp/train_rec.py

223 lines
8.2 KiB
Python
Executable File

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import time
import multiprocessing
import numpy as np
# from paddle.fluid.contrib.model_stat import summary
def set_paddle_flags(**kwargs):
for key, value in kwargs.items():
if os.environ.get(key, None) is None:
os.environ[key] = str(value)
# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
set_paddle_flags(
FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory
)
from paddle import fluid
from ppocr.utils.utility import create_module
from ppocr.utils.utility import load_config, merge_config
import ppocr.data.rec.reader_main as reader
from ppocr.utils.utility import ArgsParser
from ppocr.utils.character import CharacterOps, cal_predicts_accuracy
from ppocr.utils.check import check_gpu
from ppocr.utils.stats import TrainingStats
from ppocr.utils.checkpoint import load_pretrain, load_checkpoint, save, save_model
from ppocr.utils.eval_utils import eval_run
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import create_multi_devices_program
def main():
config = load_config(FLAGS.config)
merge_config(FLAGS.opt)
char_ops = CharacterOps(config['Global'])
config['Global']['char_num'] = char_ops.get_char_num()
print(config)
# check if set use_gpu=True in paddlepaddle cpu version
use_gpu = config['Global']['use_gpu']
check_gpu(use_gpu)
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
rec_model = create_module(config['Architecture']['function'])(params=config)
startup_prog = fluid.Program()
train_prog = fluid.Program()
with fluid.program_guard(train_prog, startup_prog):
with fluid.unique_name.guard():
train_loader, train_outputs = rec_model(mode="train")
save_var = train_outputs[1]
if "gradient_clip" in config['Global']:
gradient_clip = config['Global']['gradient_clip']
clip = fluid.clip.GradientClipByGlobalNorm(gradient_clip)
fluid.clip.set_gradient_clip(clip, program=train_prog)
train_fetch_list = [v.name for v in train_outputs]
train_loss = train_outputs[0]
opt_params = config['Optimizer']
optimizer = create_module(opt_params['function'])(opt_params)
optimizer.minimize(train_loss)
global_lr = optimizer._global_learning_rate()
global_lr.persistable = True
train_fetch_list.append(global_lr.name)
train_reader = reader.train_eval_reader(
config=config, char_ops=char_ops, mode="train")
train_loader.set_sample_list_generator(train_reader, places=place)
eval_prog = fluid.Program()
with fluid.program_guard(eval_prog, startup_prog):
with fluid.unique_name.guard():
eval_loader, eval_outputs = rec_model(mode="eval")
eval_fetch_list = [v.name for v in eval_outputs]
eval_prog = eval_prog.clone(for_test=True)
exe.run(startup_prog)
eval_reader = reader.train_eval_reader(
config=config, char_ops=char_ops, mode="eval")
eval_loader.set_sample_list_generator(eval_reader, places=place)
# compile program for multi-devices
train_compile_program = create_multi_devices_program(train_prog,
train_loss.name)
pretrain_weights = config['Global']['pretrain_weights']
if pretrain_weights is not None:
load_pretrain(exe, train_prog, pretrain_weights)
train_batch_id = 0
train_log_keys = ['loss', 'acc']
log_smooth_window = config['Global']['log_smooth_window']
epoch_num = config['Global']['epoch_num']
loss_type = config['Global']['loss_type']
print_step = config['Global']['print_step']
eval_step = config['Global']['eval_step']
save_epoch_step = config['Global']['save_epoch_step']
save_dir = config['Global']['save_dir']
train_stats = TrainingStats(log_smooth_window, train_log_keys)
best_eval_acc = -1
best_batch_id = 0
best_epoch = 0
for epoch in range(epoch_num):
train_loader.start()
try:
while True:
t1 = time.time()
train_outs = exe.run(program=train_compile_program,
fetch_list=train_fetch_list,
return_numpy=False)
loss = np.mean(np.array(train_outs[0]))
lr = np.mean(np.array(train_outs[-1]))
preds = np.array(train_outs[1])
preds_lod = train_outs[1].lod()[0]
labels = np.array(train_outs[2])
labels_lod = train_outs[2].lod()[0]
acc, acc_num, img_num = cal_predicts_accuracy(
char_ops, preds, preds_lod, labels, labels_lod)
t2 = time.time()
train_batch_elapse = t2 - t1
stats = {'loss': loss, 'acc': acc}
train_stats.update(stats)
if train_batch_id > 0 and train_batch_id % print_step == 0:
logs = train_stats.log()
strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format(
epoch, train_batch_id, lr, logs, train_batch_elapse)
logger.info(strs)
if train_batch_id > 0 and train_batch_id % eval_step == 0:
outs = eval_run(exe, eval_prog, eval_loader,
eval_fetch_list, char_ops, train_batch_id,
"eval")
eval_acc, acc_num, sample_num = outs
if eval_acc > best_eval_acc:
best_eval_acc = eval_acc
best_batch_id = train_batch_id
best_epoch = epoch
save_path = save_dir + "/best_accuracy"
save_model(train_prog, save_path)
strs = 'Test iter: {}, acc:{:.6f}, best_acc:{:.6f}, best_epoch:{}, best_batch_id:{}, sample_num:{}'.format(
train_batch_id, eval_acc, best_eval_acc, best_epoch,
best_batch_id, sample_num)
logger.info(strs)
train_batch_id += 1
except fluid.core.EOFException:
train_loader.reset()
if epoch > 0 and epoch % save_epoch_step == 0:
save_path = save_dir + "/iter_epoch_%d" % (epoch)
save_model(train_prog, save_path)
def test_reader():
config = load_config(FLAGS.config)
merge_config(FLAGS.opt)
char_ops = CharacterOps(config['Global'])
config['Global']['char_num'] = char_ops.get_char_num()
print(config)
# tmp_reader = reader.train_eval_reader(
# config=cfg, char_ops=char_ops, mode="train")
tmp_reader = reader.train_eval_reader(
config=config, char_ops=char_ops, mode="eval")
count = 0
print_count = 0
import time
starttime = time.time()
for data in tmp_reader():
count += len(data)
print_count += 1
if print_count % 10 == 0:
batch_time = (time.time() - starttime) / print_count
print("reader:", count, len(data), batch_time)
print("finish reader:", count)
print("success")
if __name__ == '__main__':
parser = ArgsParser()
parser.add_argument(
"-r",
"--resume_checkpoint",
default=None,
type=str,
help="Checkpoint path for resuming training.")
FLAGS = parser.parse_args()
main()
# test_reader()