rumale/lib/svmkit/preprocessing/l2_normalizer.rb

58 lines
1.6 KiB
Ruby

require 'svmkit/base/base_estimator'
require 'svmkit/base/transformer'
module SVMKit
# This module consists of the classes that perform preprocessings.
module Preprocessing
# Normalize samples to unit L2-norm.
#
# normalizer = SVMKit::Preprocessing::StandardScaler.new
# new_samples = normalizer.fit_transform(samples)
class L2Normalizer
include Base::BaseEstimator
include Base::Transformer
# The vector consists of norms of each sample.
attr_reader :norm_vec # :nodoc:
# Create a new normalizer for normaliing to unit L2-norm.
#
# :call-seq:
# new() -> L2Normalizer
def initialize(_params = {})
@norm_vec = nil
end
# Calculate L2 norms of each sample.
#
# :call-seq:
# fit(x) -> L2Normalizer
#
# * *Arguments* :
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to calculate L2-norms.
# * *Returns* :
# - L2Normalizer
def fit(x, _y = nil)
n_samples, = x.shape
@norm_vec = NMatrix.new([1, n_samples],
Array.new(n_samples) { |n| x.row(n).norm2 })
self
end
# Calculate L2 norms of each sample, and then normalize samples to unit L2-norm.
#
# :call-seq:
# fit_transform(x) -> NMatrix
#
# * *Arguments* :
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to calculate L2-norms.
# * *Returns* :
# - The normalized samples (NMatrix)
def fit_transform(x, _y = nil)
fit(x)
x / @norm_vec.transpose.repeat(x.shape[1], 1)
end
end
end
end