0724_merge8

This commit is contained in:
朱晗 2025-07-24 19:54:15 +08:00
parent 6255ad5aa7
commit b8549ac48a
3 changed files with 47 additions and 6 deletions

View File

@ -1,6 +1,7 @@
import asyncio
import uuid
import colorama
import torch
from tensordict import TensorDict
from transformers import AutoProcessor, PreTrainedTokenizerFast
@ -47,7 +48,13 @@ class VisionRLVRWorkflow(RLVRWorkflow):
gconfig=self.gconfig.new(n_samples=1),
)
resps = await asyncio.gather(*[engine.agenerate(req) for _ in range(n_samples)])
version = engine.get_version()
prompt_strs = []
completions_strs = []
rewards = []
seqlens = []
results = []
for resp in resps:
seq = resp.input_tokens + resp.output_tokens
@ -55,14 +62,19 @@ class VisionRLVRWorkflow(RLVRWorkflow):
loss_mask = [0] * resp.input_len + [1] * resp.output_len
versions = [-1] * resp.input_len + resp.output_versions
prompt_str = self.tokenizer.decode(input_ids)
completions_str = self.tokenizer.decode(resp.output_tokens)
prompt_strs.append(prompt_str)
completions_strs.append(completions_str)
seqlens.append(len(seq))
reward = self.reward_fn(
prompt=self.tokenizer.decode(input_ids),
completions=self.tokenizer.decode(resp.output_tokens),
prompt=prompt_str,
completions=completions_str,
prompt_ids=resp.input_tokens,
completion_ids=resp.output_tokens,
**data,
)
rewards.append(reward)
res = dict(
# unsqueeze to add an additional batch dimension
input_ids=torch.tensor(seq).unsqueeze(0),
@ -76,4 +88,32 @@ class VisionRLVRWorkflow(RLVRWorkflow):
rewards=torch.tensor([reward]),
)
results.append(TensorDict(res, batch_size=[1]))
if self.dump_dir is not None:
os.makedirs(os.path.join(self.dump_dir, str(version)), exist_ok=True)
# Get the unique identifier for this prompt
qid = None
for key in ["query_id", "id", "qid"]:
qid = data.get(key, None)
if qid is not None:
break
qid = qid or uuid.uuid4().hex
# Dump rollout to file
with open(
os.path.join(self.dump_dir, str(version), f"{qid}.txt"), "a"
) as f:
n_samples = self.gconfig.n_samples
for i, (p, c, r, sl) in enumerate(
zip(prompt_strs, completions_strs, rewards, seqlens)
):
info = "\n".join(
[
f"idx: {i + 1} / {n_samples}, seqlen: {sl}, reward is {r}.",
f"prompt is \n{colorama.Fore.YELLOW + colorama.Style.DIM}{p}{colorama.Style.RESET_ALL}",
f"sequence is: \n{colorama.Fore.YELLOW + colorama.Style.DIM}{c}{colorama.Style.RESET_ALL}",
]
)
f.write(info + "\n")
return concat_padded_tensors(results)

View File

@ -141,6 +141,9 @@ def main(args):
tokenizer=tokenizer,
processor=processor,
enable_thinking=False,
dump_dir=os.path.join(
StatsLogger.get_log_path(config.stats_logger), "generated"
),
)
# Run training.

View File

@ -3,8 +3,6 @@ import sys
import torch
import torch.distributed as dist
from datasets import Dataset, load_dataset
from datasets.distributed import split_dataset_by_node
from torchdata.stateful_dataloader import StatefulDataLoader
from arealite.api.cli_args import GRPOConfig, load_expr_config