mirror of https://github.com/inclusionAI/AReaL
123 lines
3.3 KiB
Plaintext
Executable File
123 lines
3.3 KiB
Plaintext
Executable File
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Content with notebooks\n",
|
|
"\n",
|
|
"You can also create content with Jupyter Notebooks. This means that you can include\n",
|
|
"code blocks and their outputs in your book.\n",
|
|
"\n",
|
|
"## Markdown + notebooks\n",
|
|
"\n",
|
|
"As it is markdown, you can embed images, HTML, etc into your posts!\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"You can also $add_{math}$ and\n",
|
|
"\n",
|
|
"$$\n",
|
|
"math^{blocks}\n",
|
|
"$$\n",
|
|
"\n",
|
|
"or\n",
|
|
"\n",
|
|
"$$\n",
|
|
"\\begin{aligned}\n",
|
|
"\\mbox{mean} la_{tex} \\\\ \\\\\n",
|
|
"math blocks\n",
|
|
"\\end{aligned}\n",
|
|
"$$\n",
|
|
"\n",
|
|
"But make sure you \\$Escape \\$your \\$dollar signs \\$you want to keep!\n",
|
|
"\n",
|
|
"## MyST markdown\n",
|
|
"\n",
|
|
"MyST markdown works in Jupyter Notebooks as well. For more information about MyST markdown, check\n",
|
|
"out [the MyST guide in Jupyter Book](https://jupyterbook.org/content/myst.html),\n",
|
|
"or see [the MyST markdown documentation](https://myst-parser.readthedocs.io/en/latest/).\n",
|
|
"\n",
|
|
"## Code blocks and outputs\n",
|
|
"\n",
|
|
"Jupyter Book will also embed your code blocks and output in your book.\n",
|
|
"For example, here's some sample Matplotlib code:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from matplotlib import rcParams, cycler\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"plt.ion()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Fixing random state for reproducibility\n",
|
|
"np.random.seed(19680801)\n",
|
|
"\n",
|
|
"N = 10\n",
|
|
"data = [np.logspace(0, 1, 100) + np.random.randn(100) + ii for ii in range(N)]\n",
|
|
"data = np.array(data).T\n",
|
|
"cmap = plt.cm.coolwarm\n",
|
|
"rcParams['axes.prop_cycle'] = cycler(color=cmap(np.linspace(0, 1, N)))\n",
|
|
"\n",
|
|
"\n",
|
|
"from matplotlib.lines import Line2D\n",
|
|
"custom_lines = [Line2D([0], [0], color=cmap(0.), lw=4),\n",
|
|
" Line2D([0], [0], color=cmap(.5), lw=4),\n",
|
|
" Line2D([0], [0], color=cmap(1.), lw=4)]\n",
|
|
"\n",
|
|
"fig, ax = plt.subplots(figsize=(10, 5))\n",
|
|
"lines = ax.plot(data)\n",
|
|
"ax.legend(custom_lines, ['Cold', 'Medium', 'Hot']);"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"There is a lot more that you can do with outputs (such as including interactive outputs)\n",
|
|
"with your book. For more information about this, see [the Jupyter Book documentation](https://jupyterbook.org)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.0"
|
|
},
|
|
"widgets": {
|
|
"application/vnd.jupyter.widget-state+json": {
|
|
"state": {},
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|