AReaL/grader.py

398 lines
12 KiB
Python

"""This logic is largely copied from the Hendrycks' MATH release
(math_equivalence), and borrowed from:
- https://github.com/microsoft/ProphetNet/tree/master/CRITIC
- https://github.com/openai/prm800k
- https://github.com/microsoft/ToRA/blob/main/src/eval/grader.py
- https://github.com/deepseek-ai/DeepSeek-Math/blob/main/evaluation/eval/eval_utils.py
"""
import multiprocessing
import re
from collections import defaultdict
from math import isclose
from typing import Union
import regex
from latex2sympy2 import latex2sympy
from sympy import N, simplify
from sympy.parsing.latex import parse_latex
from sympy.parsing.sympy_parser import parse_expr
# from .parser import choice_answer_clean, strip_string
# from parser import choice_answer_clean
def choice_answer_clean(pred: str):
pred = pred.strip("\n").rstrip(".").rstrip("/").strip(" ").lstrip(":")
# Clean the answer based on the dataset
tmp = re.findall(r"\b(A|B|C|D|E)\b", pred.upper())
if tmp:
pred = tmp
else:
pred = [pred.strip().strip(".")]
pred = pred[-1]
# Remove the period at the end, again!
pred = pred.rstrip(".").rstrip("/")
return pred
def parse_digits(num):
num = regex.sub(",", "", str(num))
try:
return float(num)
except:
if num.endswith("%"):
num = num[:-1]
if num.endswith("\\"):
num = num[:-1]
try:
return float(num) / 100
except:
pass
return None
def is_digit(num):
# paired with parse_digits
return parse_digits(num) is not None
def str_to_pmatrix(input_str):
input_str = input_str.strip()
matrix_str = re.findall(r"\{.*,.*\}", input_str)
pmatrix_list = []
for m in matrix_str:
m = m.strip("{}")
pmatrix = r"\begin{pmatrix}" + m.replace(",", "\\") + r"\end{pmatrix}"
pmatrix_list.append(pmatrix)
return ", ".join(pmatrix_list)
def math_equal(
prediction: Union[bool, float, str],
reference: Union[float, str],
include_percentage: bool = True,
is_close: bool = True,
timeout: bool = False,
) -> bool:
"""
Exact match of math if and only if:
1. numerical equal: both can convert to float and are equal
2. symbolic equal: both can convert to sympy expression and are equal
"""
# print("Judge:", prediction, reference)
if prediction is None or reference is None:
return False
if str(prediction.strip().lower()) == str(reference.strip().lower()):
return True
if (
reference in ["A", "B", "C", "D", "E"]
and choice_answer_clean(prediction) == reference
):
return True
try: # 1. numerical equal
if is_digit(prediction) and is_digit(reference):
prediction = parse_digits(prediction)
reference = parse_digits(reference)
# number questions
if include_percentage:
gt_result = [reference / 100, reference, reference * 100]
else:
gt_result = [reference]
for item in gt_result:
try:
if is_close:
if numeric_equal(prediction, item):
return True
else:
if item == prediction:
return True
except Exception:
continue
return False
except:
pass
if not prediction and prediction not in [0, False]:
return False
# 2. symbolic equal
reference = str(reference).strip()
prediction = str(prediction).strip()
## pmatrix (amps)
if "pmatrix" in prediction and not "pmatrix" in reference:
reference = str_to_pmatrix(reference)
## deal with [], (), {}
pred_str, ref_str = prediction, reference
if (
prediction.startswith("[")
and prediction.endswith("]")
and not reference.startswith("(")
) or (
prediction.startswith("(")
and prediction.endswith(")")
and not reference.startswith("[")
):
pred_str = pred_str.strip("[]()")
ref_str = ref_str.strip("[]()")
for s in ["{", "}", "(", ")"]:
ref_str = ref_str.replace(s, "")
pred_str = pred_str.replace(s, "")
if pred_str.lower() == ref_str.lower():
return True
## [a, b] vs. [c, d], return a==c and b==d
if (
regex.match(r"(\(|\[).+(\)|\])", prediction) is not None
and regex.match(r"(\(|\[).+(\)|\])", reference) is not None
):
pred_parts = prediction[1:-1].split(",")
ref_parts = reference[1:-1].split(",")
if len(pred_parts) == len(ref_parts):
if all(
[
math_equal(
pred_parts[i], ref_parts[i], include_percentage, is_close
)
for i in range(len(pred_parts))
]
):
return True
if (
(
prediction.startswith("\\begin{pmatrix}")
or prediction.startswith("\\begin{bmatrix}")
)
and (
prediction.endswith("\\end{pmatrix}")
or prediction.endswith("\\end{bmatrix}")
)
and (
reference.startswith("\\begin{pmatrix}")
or reference.startswith("\\begin{bmatrix}")
)
and (
reference.endswith("\\end{pmatrix}") or reference.endswith("\\end{bmatrix}")
)
):
pred_lines = [
line.strip()
for line in prediction[
len("\\begin{pmatrix}") : -len("\\end{pmatrix}")
].split("\\\\")
if line.strip()
]
ref_lines = [
line.strip()
for line in reference[
len("\\begin{pmatrix}") : -len("\\end{pmatrix}")
].split("\\\\")
if line.strip()
]
matched = True
if len(pred_lines) == len(ref_lines):
for pred_line, ref_line in zip(pred_lines, ref_lines):
pred_parts = pred_line.split("&")
ref_parts = ref_line.split("&")
if len(pred_parts) == len(ref_parts):
if not all(
[
math_equal(
pred_parts[i],
ref_parts[i],
include_percentage,
is_close,
)
for i in range(len(pred_parts))
]
):
matched = False
break
else:
matched = False
if not matched:
break
else:
matched = False
if matched:
return True
if prediction.count("=") == 1 and reference.count("=") == 1:
pred = prediction.split("=")
pred = f"{pred[0].strip()} - ({pred[1].strip()})"
ref = reference.split("=")
ref = f"{ref[0].strip()} - ({ref[1].strip()})"
if symbolic_equal(pred, ref) or symbolic_equal(f"-({pred})", ref):
return True
elif (
prediction.count("=") == 1
and len(prediction.split("=")[0].strip()) <= 2
and "=" not in reference
):
if math_equal(
prediction.split("=")[1], reference, include_percentage, is_close
):
return True
elif (
reference.count("=") == 1
and len(reference.split("=")[0].strip()) <= 2
and "=" not in prediction
):
if math_equal(
prediction, reference.split("=")[1], include_percentage, is_close
):
return True
# symbolic equal with sympy
if timeout:
if call_with_timeout(symbolic_equal_process, prediction, reference):
return True
else:
if symbolic_equal(prediction, reference):
return True
return False
def math_equal_process(param):
return math_equal(param[-2], param[-1])
def numeric_equal(prediction: float, reference: float):
# Note that relative tolerance has significant impact
# on the result of the synthesized GSM-Hard dataset
# if reference.is_integer():
# return isclose(reference, round(prediction), abs_tol=1e-4)
# else:
# prediction = round(prediction, len(str(reference).split(".")[-1]))
return isclose(reference, prediction, rel_tol=1e-4)
def symbolic_equal(a, b):
def _parse(s):
for f in [parse_latex, parse_expr, latex2sympy]:
try:
return f(s.replace("\\\\", "\\"))
except:
try:
return f(s)
except:
pass
return s
a = _parse(a)
b = _parse(b)
# direct equal
try:
if str(a) == str(b) or a == b:
return True
except:
pass
# simplify equal
try:
if a.equals(b) or simplify(a - b) == 0:
return True
except:
pass
# equation equal
try:
if (abs(a.lhs - a.rhs)).equals(abs(b.lhs - b.rhs)):
return True
except:
pass
try:
if numeric_equal(float(N(a)), float(N(b))):
return True
except:
pass
# matrix
try:
# if a and b are matrix
if a.shape == b.shape:
_a = a.applyfunc(lambda x: round(x, 3))
_b = b.applyfunc(lambda x: round(x, 3))
if _a.equals(_b):
return True
except:
pass
return False
def symbolic_equal_process(a, b, output_queue):
result = symbolic_equal(a, b)
output_queue.put(result)
def call_with_timeout(func, *args, timeout=3, **kwargs):
output_queue = multiprocessing.Queue()
process_args = args + (output_queue,)
process = multiprocessing.Process(target=func, args=process_args, kwargs=kwargs)
process.start()
process.join(timeout)
if process.is_alive():
process.terminate()
process.join()
return False
return output_queue.get()
def _test_math_equal():
# print(math_equal("0.0833333333333333", "\\frac{1}{12}"))
# print(math_equal("(1,4.5)", "(1,\\frac{9}{2})"))
# print(math_equal("\\frac{x}{7}+\\frac{2}{7}", "\\frac{x+2}{7}", timeout=True))
# print(math_equal("\\sec^2(y)", "\\tan^2(y)+1", timeout=True))
# print(math_equal("\\begin{pmatrix}-\\frac{7}{4}&-2\\\\4&\\frac{1}{4}\\end{pmatrix}", "(\\begin{pmatrix}-\\frac{7}{4}&-2\\\\4&\\frac{1}{4}\\\\\\end{pmatrix})", timeout=True))
# pred = '\\begin{pmatrix}\\frac{1}{3x^{2/3}}&0&0\\\\0&1&0\\\\-\\sin(x)&0&0\\end{pmatrix}'
# gt = '(\\begin{pmatrix}\\frac{1}{3\\sqrt[3]{x}^2}&0&0\\\\0&1&0\\\\-\\sin(x)&0&0\\\\\\end{pmatrix})'
# pred= '-\\frac{8x^2}{9(x^2-2)^{5/3}}+\\frac{2}{3(x^2-2)^{2/3}}'
# gt= '-\\frac{2(x^2+6)}{9(x^2-2)\\sqrt[3]{x^2-2}^2}'
# pred = '-34x-45y+20z-100=0'
# gt = '34x+45y-20z+100=0'
# pred = '\\frac{100}{3}'
# gt = '33.3'
# pred = '\\begin{pmatrix}0.290243531202435\\\\0.196008371385084\\\\-0.186381278538813\\end{pmatrix}'
# gt = '(\\begin{pmatrix}0.29\\\\0.196\\\\-0.186\\\\\\end{pmatrix})'
# pred = '\\frac{\\sqrt{\\sqrt{11}+\\sqrt{194}}}{2\\sqrt{33}+15}'
# gt = '\\frac{\\sqrt{\\sqrt{11}+\\sqrt{194}}}{15+2\\sqrt{33}}'
# pred = '(+5)(b+2)'
# gt = '(a+5)(b+2)'
# pred = '\\frac{1+\\sqrt{5}}{2}'
# gt = '2'
# pred = '\\frac{34}{16}+\\frac{\\sqrt{1358}}{16}', gt = '4'
# pred = '1', gt = '1\\\\sqrt{19}'
# pred = "(0.6,2.6667]"
# gt = "(\\frac{3}{5},\\frac{8}{3}]"
gt = "x+0.5+0.5"
pred = "x+1"
print(math_equal(pred, gt, timeout=True))
if __name__ == "__main__":
_test_math_equal()