AReaL/realhf/api/from_hf/qwen3.py

253 lines
8.6 KiB
Python

# Copyright 2025 Ant Group Inc.
# Copyright 2024 Wei Fu & Zhiyu Mei
# Licensed under the Apache License, Version 2.0 (the "License").
from typing import *
from transformers.configuration_utils import PretrainedConfig
from realhf.api.core.model_api import ReaLModelConfig, register_hf_family
from realhf.base.testing import (
TESTING_MODEL_HEAD_DIM,
TESTING_MODEL_HIDDEN_SIZE,
TESTING_MODEL_INTERMEDIATE_SIZE,
TESTING_MODEL_N_HEADS,
TESTING_MODEL_N_LAYERS,
TESTING_MODEL_N_POSITIONS,
TESTING_MODEL_VOCAB_SIZE,
)
from .llama import (
convert_state_dict_llama,
llama_embedding_layer_names,
llama_output_head_param_name,
to_llama_state_dict,
)
class Qwen3Config(PretrainedConfig):
model_type = "qwen3"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `Qwen3`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
head_dim=128,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
**kwargs,
):
from transformers.modeling_rope_utils import rope_config_validation
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = (
sliding_window # we check `use_sliding_window` in the modeling code
)
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.head_dim = head_dim
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
def convert_config_qwen3(
hf_config: Qwen3Config,
) -> ReaLModelConfig:
return ReaLModelConfig(
n_layers=hf_config.num_hidden_layers,
n_kv_heads=hf_config.num_key_value_heads,
hidden_dim=hf_config.hidden_size,
n_q_heads=hf_config.num_attention_heads,
head_dim=getattr(
hf_config,
"head_dim",
hf_config.hidden_size // hf_config.num_attention_heads,
),
intermediate_dim=hf_config.intermediate_size,
vocab_size=hf_config.vocab_size,
n_positions=hf_config.max_position_embeddings,
embd_pdrop=0.0,
attn_pdrop=(
hf_config.attention_dropout
if hasattr(hf_config, "attention_dropout")
else 0.1
),
layer_norm_epsilon=hf_config.rms_norm_eps,
activation_function=hf_config.hidden_act,
use_attention_bias=False,
use_attn_proj_bias=False,
scale_attn_by_inverse_layer_idx=False,
layer_norm_type="rms",
qk_layernorm=True,
mlp_type="llama",
apply_rotary=True,
rotary_base=hf_config.rope_theta,
rotary_interleaved=False,
tied_embedding=hf_config.tie_word_embeddings,
)
def convert_config_back_qwen3(
config: ReaLModelConfig,
) -> Qwen3Config:
return Qwen3Config(
vocab_size=config.vocab_size,
hidden_size=config.hidden_dim,
intermediate_size=config.intermediate_dim,
num_hidden_layers=config.n_layers,
num_key_value_heads=config.n_kv_heads,
num_attention_heads=config.n_q_heads,
head_dim=config.head_dim,
max_position_embeddings=config.n_positions,
rms_norm_eps=config.layer_norm_epsilon,
hidden_act=config.activation_function,
attention_dropout=config.attn_pdrop,
rope_theta=config.rotary_base,
architectures=["Qwen3ForCausalLM"], # ["Qwen3ForCausalLM"],
tie_word_embeddings=config.tied_embedding,
)
def qwen3_config_maker():
hf_config = Qwen3Config(
vocab_size=TESTING_MODEL_VOCAB_SIZE,
max_position_embeddings=TESTING_MODEL_N_POSITIONS,
hidden_size=TESTING_MODEL_HIDDEN_SIZE,
intermediate_size=TESTING_MODEL_INTERMEDIATE_SIZE,
num_hidden_layers=TESTING_MODEL_N_LAYERS,
num_attention_heads=TESTING_MODEL_N_HEADS,
head_dim=TESTING_MODEL_HEAD_DIM,
num_key_value_heads=8,
hidden_act="silu",
rms_norm_eps=1e-5,
)
return convert_config_qwen3(hf_config)
def convert_state_dict_qwen3(state_dict: Dict, config: ReaLModelConfig) -> Dict:
llama_state_dict = convert_state_dict_llama(state_dict, config)
# model.layers.0.self_attn.k_norm.weight -> 1.attn.k_ln.weight
new_state_dict = {}
for k, v in llama_state_dict.items():
if "k_norm" in k:
k = k.replace("k_norm", "k_ln")
if "q_norm" in k:
k = k.replace("q_norm", "q_ln")
new_state_dict[k] = v
return new_state_dict
def convert_state_dict_back_qwen3(state_dict: Dict, config: ReaLModelConfig) -> Dict:
new_sd = to_llama_state_dict(state_dict, config)
layer_indices = list(set([int(k.split(".")[0]) for k in state_dict.keys()]))
for i in layer_indices:
if i == 0 or i == config.n_layers + 1:
continue
new_sd[f"model.layers.{i - 1}.self_attn.k_norm.weight"] = state_dict[
f"{i}.attn.k_ln.weight"
]
new_sd[f"model.layers.{i - 1}.self_attn.q_norm.weight"] = state_dict[
f"{i}.attn.q_ln.weight"
]
return new_sd
def qwen3_transformer_block_param_name(config: ReaLModelConfig, idx: int) -> List[str]:
names = []
for k in ["weight", "bias"]:
names += [
f"model.layers.{idx}.input_layernorm.{k}",
f"model.layers.{idx}.mlp.down_proj.{k}",
f"model.layers.{idx}.mlp.gate_proj.{k}",
f"model.layers.{idx}.mlp.up_proj.{k}",
f"model.layers.{idx}.post_attention_layernorm.{k}",
f"model.layers.{idx}.self_attn.k_proj.{k}",
f"model.layers.{idx}.self_attn.o_proj.{k}",
f"model.layers.{idx}.self_attn.q_proj.{k}",
# f"model.layers.{idx}.self_attn.rotary_emb.inv_freq",
f"model.layers.{idx}.self_attn.v_proj.{k}",
]
if idx == config.n_layers - 1:
names += [f"model.norm.{k}"]
# Qwen3
if config.qk_layernorm:
names += [
f"model.layers.{idx}.self_attn.q_norm.weight",
f"model.layers.{idx}.self_attn.k_norm.weight",
]
return names
register_hf_family(
name="qwen3",
hf_cls_name="Qwen3ForCausalLM", # "Qwen3ForCausalLM"
config_from_hf_converter=convert_config_qwen3,
config_to_hf_converter=convert_config_back_qwen3,
sd_from_hf_converter=convert_state_dict_qwen3,
sd_to_hf_converter=convert_state_dict_back_qwen3,
embedding_param_names=llama_embedding_layer_names,
tblock_param_names=qwen3_transformer_block_param_name,
head_param_names=llama_output_head_param_name,
real_config_maker=qwen3_config_maker,
)