mirror of https://github.com/inclusionAI/AReaL
343 lines
12 KiB
Python
343 lines
12 KiB
Python
# Modified from Megatron-LM.
|
|
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
|
|
|
# Parts of the code here are adapted from PyTorch
|
|
# repo: https://github.com/pytorch/pytorch
|
|
|
|
import contextlib
|
|
|
|
import torch
|
|
from torch import _C
|
|
from torch.cuda import _lazy_call
|
|
from torch.cuda import device as device_ctx_manager
|
|
from torch.utils.checkpoint import detach_variable
|
|
|
|
import realhf.base.constants as constants
|
|
from realhf.impl.model.parallelism.tensor_parallel.utils import (
|
|
divide,
|
|
gather_split_1d_tensor,
|
|
safely_set_viewless_tensor_data,
|
|
set_tensor_model_parallel_attributes,
|
|
split_tensor_into_1d_equal_chunks,
|
|
)
|
|
|
|
# Default name for the model parallel rng tracker.
|
|
_MODEL_PARALLEL_RNG_TRACKER_NAME = "model-parallel-rng"
|
|
_EXPERT_PARALLEL_RNG_TRACKER_NAME = "expert-parallel-rng"
|
|
_DATA_PARALLEL_RNG_TRACKER_NAME = "data-parallel-rng"
|
|
|
|
|
|
def _set_cuda_rng_state(new_state, device=-1):
|
|
"""Sets the random number generator state of the current GPU.
|
|
|
|
Argumentss:
|
|
new_state (torch.ByteTensor): The desired state
|
|
This function is adapted from PyTorch repo (torch.cuda.set_rng_state)
|
|
with a single change: the input state is not cloned. Cloning caused
|
|
major performance issues for +4 GPU cases.
|
|
"""
|
|
if hasattr(_C, "_cuda_setRNGState") and callable(_C._cuda_setRNGState):
|
|
# older PyTorch
|
|
def cb():
|
|
with device_ctx_manager(device):
|
|
_C._cuda_setRNGState(new_state)
|
|
|
|
else:
|
|
# newer PyTorch
|
|
if device == -1:
|
|
device = torch.device("cuda")
|
|
elif isinstance(device, str):
|
|
device = torch.device(device)
|
|
elif isinstance(device, int):
|
|
device = torch.device("cuda", device)
|
|
|
|
def cb():
|
|
idx = device.index
|
|
if idx is None:
|
|
idx = constants.current_device()
|
|
default_generator = torch.cuda.default_generators[idx]
|
|
default_generator.set_state(new_state)
|
|
|
|
_lazy_call(cb)
|
|
|
|
|
|
def get_expert_parallel_rng_tracker_name():
|
|
global _EXPERT_PARALLEL_RNG_TRACKER_NAME
|
|
return _EXPERT_PARALLEL_RNG_TRACKER_NAME
|
|
|
|
|
|
def get_data_parallel_rng_tracker_name():
|
|
global _DATA_PARALLEL_RNG_TRACKER_NAME
|
|
return _DATA_PARALLEL_RNG_TRACKER_NAME
|
|
|
|
|
|
class CudaRNGStatesTracker:
|
|
"""Tracker for the cuda RNG states.
|
|
|
|
Using the `add` method, a cuda rng state is initialized based on
|
|
the input `seed` and is assigned to `name`. Later, by forking the
|
|
rng state, we can perform operations and return to our starting
|
|
cuda state.
|
|
"""
|
|
|
|
def __init__(self):
|
|
# Map from a string name to the cuda rng state.
|
|
self.states_ = {}
|
|
# Seeds are just for book keeping and ensure no seed is set twice.
|
|
self.seeds_ = set()
|
|
|
|
def reset(self):
|
|
"""Set to the initial state (no tracker)."""
|
|
self.states_ = {}
|
|
self.seeds_ = set()
|
|
|
|
def get_states(self):
|
|
"""Get rng states.
|
|
|
|
Copy the dictionary so we have direct pointers to the states,
|
|
not just a pointer to the dictionary.
|
|
"""
|
|
states = {}
|
|
for name in self.states_:
|
|
states[name] = self.states_[name]
|
|
return states
|
|
|
|
def set_states(self, states):
|
|
"""Set the rng states.
|
|
|
|
For efficiency purposes, we do not check the size of seed for
|
|
compatibility.
|
|
"""
|
|
self.states_ = states
|
|
|
|
def add(self, name, seed):
|
|
"""Track the rng state."""
|
|
# Check seed is not already used.
|
|
if seed in self.seeds_:
|
|
raise Exception("seed {} already exists".format(seed))
|
|
self.seeds_.add(seed)
|
|
# Check that state is not already defined.
|
|
if name in self.states_:
|
|
raise Exception("cuda rng state {} already exists".format(name))
|
|
# Get the current rng state.
|
|
orig_rng_state = torch.cuda.get_rng_state()
|
|
# Set the new state and store it.
|
|
torch.cuda.manual_seed(seed)
|
|
self.states_[name] = torch.cuda.get_rng_state()
|
|
# Reset rng state to what it was.
|
|
_set_cuda_rng_state(orig_rng_state)
|
|
|
|
@contextlib.contextmanager
|
|
def fork(self, name=_MODEL_PARALLEL_RNG_TRACKER_NAME):
|
|
"""Fork the cuda rng state, perform operations, and exit with the
|
|
original state."""
|
|
# Check if we have added the state
|
|
if name not in self.states_:
|
|
raise Exception("cuda rng state {} is not added".format(name))
|
|
# Store current rng state.
|
|
orig_cuda_rng_state = torch.cuda.get_rng_state()
|
|
# Set rng state to the desired one
|
|
_set_cuda_rng_state(self.states_[name])
|
|
# Do the stuff we wanted to do.
|
|
try:
|
|
yield
|
|
finally:
|
|
# Update the current rng state for later use.
|
|
self.states_[name] = torch.cuda.get_rng_state()
|
|
# And set the state to the original state we started with.
|
|
_set_cuda_rng_state(orig_cuda_rng_state)
|
|
|
|
|
|
# RNG tracker object.
|
|
_CUDA_RNG_STATE_TRACKER = CudaRNGStatesTracker()
|
|
|
|
|
|
def get_cuda_rng_tracker():
|
|
"""Get cuda rng tracker."""
|
|
return _CUDA_RNG_STATE_TRACKER
|
|
|
|
|
|
def model_parallel_cuda_manual_seed(seed):
|
|
"""Initialize model parallel cuda seed.
|
|
|
|
This function should be called after the model parallel is
|
|
initialized. Also, no torch.cuda.manual_seed should be called
|
|
after this function. Basically, this is replacement for that
|
|
function.
|
|
Two set of RNG states are tracked:
|
|
default state: This is for data parallelism and is the same among a set of model parallel GPUs but different across different model paralle groups. This is used for example for dropout in the non-tensor-model-parallel regions.
|
|
tensor-model-parallel state: This state is different among a set of model parallel GPUs, but the same across data parallel groups. This is used for example for dropout in model parallel regions.
|
|
"""
|
|
# 2718 is just for fun and any POSITIVE value will work.
|
|
tensor_parallel_rank = constants.tensor_parallel_rank()
|
|
expert_parallel_rank = 0
|
|
offset = seed + 2718
|
|
tensor_model_parallel_seed = offset + tensor_parallel_rank
|
|
# Data parallel gets the original seed.
|
|
data_parallel_seed = seed
|
|
|
|
_CUDA_RNG_STATE_TRACKER.reset()
|
|
# Set the default state.
|
|
torch.cuda.manual_seed(data_parallel_seed)
|
|
_CUDA_RNG_STATE_TRACKER.add(_DATA_PARALLEL_RNG_TRACKER_NAME, data_parallel_seed)
|
|
|
|
# and model parallel state.
|
|
_CUDA_RNG_STATE_TRACKER.add(
|
|
_MODEL_PARALLEL_RNG_TRACKER_NAME, tensor_model_parallel_seed
|
|
)
|
|
|
|
expert_parallel_seed = (
|
|
seed + 1024 + 100 * expert_parallel_rank + tensor_parallel_rank
|
|
)
|
|
_CUDA_RNG_STATE_TRACKER.add(_EXPERT_PARALLEL_RNG_TRACKER_NAME, expert_parallel_seed)
|
|
|
|
|
|
class CheckpointFunction(torch.autograd.Function):
|
|
"""Checkpoint Function.
|
|
|
|
This function is adapted from torch.utils.checkpoint with two main changes:
|
|
1) torch.cuda.set_rng_state is replaced with `_set_cuda_rng_state`
|
|
2) the states in the model parallel tracker are also properly tracked/set/reset.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, run_function, distribute_saved_activations, *args):
|
|
ctx.run_function = run_function
|
|
ctx.distribute_saved_activations = distribute_saved_activations
|
|
|
|
# Copy the rng states.
|
|
ctx.fwd_cpu_rng_state = torch.get_rng_state()
|
|
ctx.fwd_cuda_rng_state = torch.cuda.get_rng_state()
|
|
ctx.fwd_cuda_rng_state_tracker = get_cuda_rng_tracker().get_states()
|
|
|
|
with torch.no_grad():
|
|
outputs = run_function(*args)
|
|
|
|
# Divide hidden states across model parallel group and only keep
|
|
# the chunk corresponding to the current rank.
|
|
if distribute_saved_activations:
|
|
ctx.input_0_shape = args[0].data.shape
|
|
safely_set_viewless_tensor_data(
|
|
args[0],
|
|
split_tensor_into_1d_equal_chunks(args[0].data, new_buffer=True),
|
|
)
|
|
|
|
# Store everything.
|
|
ctx.save_for_backward(*args)
|
|
|
|
return outputs
|
|
|
|
@staticmethod
|
|
def backward(ctx, *args):
|
|
if not torch.autograd._is_checkpoint_valid():
|
|
raise RuntimeError(
|
|
"Checkpointing is not compatible with .grad(), "
|
|
"please use .backward() if possible"
|
|
)
|
|
inputs = ctx.saved_tensors
|
|
if ctx.distribute_saved_activations:
|
|
safely_set_viewless_tensor_data(
|
|
inputs[0],
|
|
gather_split_1d_tensor(inputs[0].data).view(ctx.input_0_shape),
|
|
)
|
|
|
|
# Store the current states.
|
|
bwd_cpu_rng_state = torch.get_rng_state()
|
|
bwd_cuda_rng_state = torch.cuda.get_rng_state()
|
|
bwd_cuda_rng_state_tracker = get_cuda_rng_tracker().get_states()
|
|
|
|
# Set the states to what it used to be before the forward pass.
|
|
torch.set_rng_state(ctx.fwd_cpu_rng_state)
|
|
_set_cuda_rng_state(ctx.fwd_cuda_rng_state)
|
|
get_cuda_rng_tracker().set_states(ctx.fwd_cuda_rng_state_tracker)
|
|
|
|
# Compute the forward pass.
|
|
detached_inputs = detach_variable(inputs)
|
|
with torch.enable_grad():
|
|
outputs = ctx.run_function(*detached_inputs)
|
|
|
|
# Set the states back to what it was at the start of this function.
|
|
torch.set_rng_state(bwd_cpu_rng_state)
|
|
_set_cuda_rng_state(bwd_cuda_rng_state)
|
|
get_cuda_rng_tracker().set_states(bwd_cuda_rng_state_tracker)
|
|
|
|
if isinstance(outputs, torch.Tensor):
|
|
outputs = (outputs,)
|
|
|
|
# filter out non tensor outputs for backward pass
|
|
outputs, args = zip(
|
|
*filter(lambda x: torch.is_tensor(x[0]), zip(outputs, args))
|
|
)
|
|
torch.autograd.backward(outputs, args)
|
|
grads = tuple(
|
|
inp.grad if isinstance(inp, torch.Tensor) else inp
|
|
for inp in detached_inputs
|
|
)
|
|
return (None, None) + grads
|
|
|
|
|
|
def checkpoint(function, distribute_saved_activations, *args):
|
|
"""Checkpoint a model or part of the model.
|
|
|
|
This has been directly copied from torch.utils.checkpoint.
|
|
"""
|
|
return CheckpointFunction.apply(function, distribute_saved_activations, *args)
|
|
|
|
|
|
def _initialize_affine_weight_gpu(
|
|
weight,
|
|
init_method,
|
|
partition_dim,
|
|
stride=1,
|
|
):
|
|
"""Initialize affine weight for model parallel on GPU."""
|
|
set_tensor_model_parallel_attributes(
|
|
tensor=weight, is_parallel=True, dim=partition_dim, stride=stride
|
|
)
|
|
init_method(weight)
|
|
|
|
|
|
def _initialize_affine_weight_cpu(
|
|
weight,
|
|
output_size,
|
|
input_size,
|
|
per_partition_size,
|
|
partition_dim,
|
|
init_method,
|
|
stride=1,
|
|
return_master_weight=False,
|
|
*,
|
|
params_dtype=torch.float32,
|
|
):
|
|
"""Initialize affine weight for model parallel.
|
|
|
|
Build the master weight on all processes and scatter the relevant
|
|
chunk.
|
|
"""
|
|
|
|
set_tensor_model_parallel_attributes(
|
|
tensor=weight, is_parallel=True, dim=partition_dim, stride=stride
|
|
)
|
|
|
|
# Initialize master weight
|
|
master_weight = torch.empty(
|
|
output_size, input_size, dtype=torch.float, requires_grad=False
|
|
)
|
|
init_method(master_weight)
|
|
master_weight = master_weight.to(dtype=params_dtype)
|
|
|
|
# Split and copy
|
|
per_partition_per_stride_size = divide(per_partition_size, stride)
|
|
weight_list = torch.split(
|
|
master_weight, per_partition_per_stride_size, dim=partition_dim
|
|
)
|
|
rank = constants.tensor_parallel_rank()
|
|
world_size = constants.tensor_parallel_world_size()
|
|
my_weight_list = weight_list[rank::world_size]
|
|
|
|
with torch.no_grad():
|
|
torch.cat(my_weight_list, dim=partition_dim, out=weight)
|
|
if return_master_weight:
|
|
return master_weight
|
|
return None
|