AReaL/arealite/workflow/multi_turn.py

88 lines
3.3 KiB
Python

import uuid
import torch
from transformers import PreTrainedTokenizerFast
from arealite.api.cli_args import GenerationHyperparameters
from arealite.api.engine_api import InferenceEngine
from arealite.api.io_struct import LLMRequest
from arealite.api.workflow_api import RolloutWorkflow
from arealite.utils.data import concat_padded_tensors
class MultiTurnWorkflow(RolloutWorkflow):
def __init__(
self,
reward_fn,
gconfig: GenerationHyperparameters,
tokenizer: PreTrainedTokenizerFast,
max_turns: int,
turn_discount: float,
):
self.reward_fn = reward_fn
self.gconfig = gconfig
self.tokenizer = tokenizer
self.max_turns = max_turns
self.turn_discount = turn_discount
async def arun_episode(self, engine: InferenceEngine, data):
# Placeholders for the results
seq, logprobs, loss_mask, versions = [], [], [], []
messages = data["messages"]
# Run multi-turn rollout until correct
t = reward = 0
discount = 1
rid = uuid.uuid4().hex
while reward == 0 and t < self.max_turns:
# Amend a prompt if the previous answer is incorrect
if t > 0:
messages += [
{"role": "asistant", "content": completions_str},
{
"role": "user",
"content": "Your answer is not correct. Please try to answer it again.",
},
]
# Convert the prompt into input_ids
input_ids = self.tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
)
# Send generate request to get the response.
req = LLMRequest(
rid=rid,
input_ids=input_ids,
gconfig=self.gconfig.new(n_samples=1),
)
resp = await engine.agenerate(req)
# compute reward: 1 for correct and 0 otherwise
prompt_str = self.tokenizer.decode(input_ids)
completions_str = self.tokenizer.decode(resp.output_tokens)
reward = self.reward_fn(
prompt=prompt_str,
completions=completions_str,
prompt_ids=resp.input_tokens,
completion_ids=resp.output_tokens,
**data,
)
# Amend results
input_len = len(resp.input_tokens) - len(seq)
seq += resp.input_tokens[-input_len:] + resp.output_tokens
logprobs += [0.0] * input_len + resp.output_logprobs
loss_mask += [0] * input_len + [1] * resp.output_len
versions += [-1] * input_len + resp.output_versions
# Increase counter
t += 1
discount *= self.turn_discount
res = dict(
seq=torch.tensor(seq),
logprobs=torch.tensor(logprobs),
loss_mask=torch.tensor(loss_mask),
versions=torch.tensor(versions),
rewards=torch.tensor([float(reward * discount)]),
attetion_mask=torch.ones(len(seq), dtype=torch.bool),
)
res = {k: v.unsqueeze(0) for k, v in res.items()}
return concat_padded_tensors([res])