LightRAG/lightrag/kg/redis_impl.py

1083 lines
43 KiB
Python

import os
from typing import Any, final, Union
from dataclasses import dataclass
import pipmaster as pm
import configparser
from contextlib import asynccontextmanager
import threading
if not pm.is_installed("redis"):
pm.install("redis")
# aioredis is a depricated library, replaced with redis
from redis.asyncio import Redis, ConnectionPool # type: ignore
from redis.exceptions import RedisError, ConnectionError, TimeoutError # type: ignore
from lightrag.utils import logger
from lightrag.base import (
BaseKVStorage,
DocStatusStorage,
DocStatus,
DocProcessingStatus,
)
import json
# Import tenacity for retry logic
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
retry_if_exception_type,
before_sleep_log,
)
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
# Constants for Redis connection pool with environment variable support
MAX_CONNECTIONS = int(os.getenv("REDIS_MAX_CONNECTIONS", "200"))
SOCKET_TIMEOUT = float(os.getenv("REDIS_SOCKET_TIMEOUT", "30.0"))
SOCKET_CONNECT_TIMEOUT = float(os.getenv("REDIS_CONNECT_TIMEOUT", "10.0"))
RETRY_ATTEMPTS = int(os.getenv("REDIS_RETRY_ATTEMPTS", "3"))
# Tenacity retry decorator for Redis operations
redis_retry = retry(
stop=stop_after_attempt(RETRY_ATTEMPTS),
wait=wait_exponential(multiplier=1, min=1, max=8),
retry=(
retry_if_exception_type(ConnectionError)
| retry_if_exception_type(TimeoutError)
| retry_if_exception_type(RedisError)
),
before_sleep=before_sleep_log(logger, "WARNING"),
)
class RedisConnectionManager:
"""Shared Redis connection pool manager to avoid creating multiple pools for the same Redis URI"""
_pools = {}
_pool_refs = {} # Track reference count for each pool
_lock = threading.Lock()
@classmethod
def get_pool(cls, redis_url: str) -> ConnectionPool:
"""Get or create a connection pool for the given Redis URL"""
with cls._lock:
if redis_url not in cls._pools:
cls._pools[redis_url] = ConnectionPool.from_url(
redis_url,
max_connections=MAX_CONNECTIONS,
decode_responses=True,
socket_timeout=SOCKET_TIMEOUT,
socket_connect_timeout=SOCKET_CONNECT_TIMEOUT,
)
cls._pool_refs[redis_url] = 0
logger.info(f"Created shared Redis connection pool for {redis_url}")
# Increment reference count
cls._pool_refs[redis_url] += 1
logger.debug(
f"Redis pool {redis_url} reference count: {cls._pool_refs[redis_url]}"
)
return cls._pools[redis_url]
@classmethod
def release_pool(cls, redis_url: str):
"""Release a reference to the connection pool"""
with cls._lock:
if redis_url in cls._pool_refs:
cls._pool_refs[redis_url] -= 1
logger.debug(
f"Redis pool {redis_url} reference count: {cls._pool_refs[redis_url]}"
)
# If no more references, close the pool
if cls._pool_refs[redis_url] <= 0:
try:
cls._pools[redis_url].disconnect()
logger.info(
f"Closed Redis connection pool for {redis_url} (no more references)"
)
except Exception as e:
logger.error(f"Error closing Redis pool for {redis_url}: {e}")
finally:
del cls._pools[redis_url]
del cls._pool_refs[redis_url]
@classmethod
def close_all_pools(cls):
"""Close all connection pools (for cleanup)"""
with cls._lock:
for url, pool in cls._pools.items():
try:
pool.disconnect()
logger.info(f"Closed Redis connection pool for {url}")
except Exception as e:
logger.error(f"Error closing Redis pool for {url}: {e}")
cls._pools.clear()
cls._pool_refs.clear()
@final
@dataclass
class RedisKVStorage(BaseKVStorage):
def __post_init__(self):
# Check for REDIS_WORKSPACE environment variable first (higher priority)
# This allows administrators to force a specific workspace for all Redis storage instances
redis_workspace = os.environ.get("REDIS_WORKSPACE")
if redis_workspace and redis_workspace.strip():
# Use environment variable value, overriding the passed workspace parameter
effective_workspace = redis_workspace.strip()
logger.info(
f"Using REDIS_WORKSPACE environment variable: '{effective_workspace}' (overriding passed workspace: '{self.workspace}')"
)
else:
# Use the workspace parameter passed during initialization
effective_workspace = self.workspace
if effective_workspace:
logger.debug(
f"Using passed workspace parameter: '{effective_workspace}'"
)
# Build namespace with workspace prefix for data isolation
if effective_workspace:
self.namespace = f"{effective_workspace}_{self.namespace}"
logger.debug(f"Final namespace with workspace prefix: '{self.namespace}'")
# When workspace is empty, keep the original namespace unchanged
self._redis_url = os.environ.get(
"REDIS_URI", config.get("redis", "uri", fallback="redis://localhost:6379")
)
self._pool = None
self._redis = None
self._initialized = False
try:
# Use shared connection pool
self._pool = RedisConnectionManager.get_pool(self._redis_url)
self._redis = Redis(connection_pool=self._pool)
logger.info(
f"Initialized Redis KV storage for {self.namespace} using shared connection pool"
)
except Exception as e:
# Clean up on initialization failure
if self._redis_url:
RedisConnectionManager.release_pool(self._redis_url)
logger.error(f"Failed to initialize Redis KV storage: {e}")
raise
async def initialize(self):
"""Initialize Redis connection and migrate legacy cache structure if needed"""
if self._initialized:
return
# Test connection
try:
async with self._get_redis_connection() as redis:
await redis.ping()
logger.info(f"Connected to Redis for namespace {self.namespace}")
self._initialized = True
except Exception as e:
logger.error(f"Failed to connect to Redis: {e}")
# Clean up on connection failure
await self.close()
raise
# Migrate legacy cache structure if this is a cache namespace
if self.namespace.endswith("_cache"):
try:
await self._migrate_legacy_cache_structure()
except Exception as e:
logger.error(f"Failed to migrate legacy cache structure: {e}")
# Don't fail initialization for migration errors, just log them
@asynccontextmanager
async def _get_redis_connection(self):
"""Safe context manager for Redis operations."""
if not self._redis:
raise ConnectionError("Redis connection not initialized")
try:
# Use the existing Redis instance with shared pool
yield self._redis
except ConnectionError as e:
logger.error(f"Redis connection error in {self.namespace}: {e}")
raise
except RedisError as e:
logger.error(f"Redis operation error in {self.namespace}: {e}")
raise
except Exception as e:
logger.error(
f"Unexpected error in Redis operation for {self.namespace}: {e}"
)
raise
async def close(self):
"""Close the Redis connection and release pool reference to prevent resource leaks."""
if hasattr(self, "_redis") and self._redis:
try:
await self._redis.close()
logger.debug(f"Closed Redis connection for {self.namespace}")
except Exception as e:
logger.error(f"Error closing Redis connection: {e}")
finally:
self._redis = None
# Release the pool reference (will auto-close pool if no more references)
if hasattr(self, "_redis_url") and self._redis_url:
RedisConnectionManager.release_pool(self._redis_url)
self._pool = None
logger.debug(
f"Released Redis connection pool reference for {self.namespace}"
)
async def __aenter__(self):
"""Support for async context manager."""
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Ensure Redis resources are cleaned up when exiting context."""
await self.close()
@redis_retry
async def get_by_id(self, id: str) -> dict[str, Any] | None:
async with self._get_redis_connection() as redis:
try:
data = await redis.get(f"{self.namespace}:{id}")
if data:
result = json.loads(data)
# Ensure time fields are present, provide default values for old data
result.setdefault("create_time", 0)
result.setdefault("update_time", 0)
return result
return None
except json.JSONDecodeError as e:
logger.error(f"JSON decode error for id {id}: {e}")
return None
@redis_retry
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
async with self._get_redis_connection() as redis:
try:
pipe = redis.pipeline()
for id in ids:
pipe.get(f"{self.namespace}:{id}")
results = await pipe.execute()
processed_results = []
for result in results:
if result:
data = json.loads(result)
# Ensure time fields are present for all documents
data.setdefault("create_time", 0)
data.setdefault("update_time", 0)
processed_results.append(data)
else:
processed_results.append(None)
return processed_results
except json.JSONDecodeError as e:
logger.error(f"JSON decode error in batch get: {e}")
return [None] * len(ids)
async def get_all(self) -> dict[str, Any]:
"""Get all data from storage
Returns:
Dictionary containing all stored data
"""
async with self._get_redis_connection() as redis:
try:
# Get all keys for this namespace
keys = await redis.keys(f"{self.namespace}:*")
if not keys:
return {}
# Get all values in batch
pipe = redis.pipeline()
for key in keys:
pipe.get(key)
values = await pipe.execute()
# Build result dictionary
result = {}
for key, value in zip(keys, values):
if value:
# Extract the ID part (after namespace:)
key_id = key.split(":", 1)[1]
try:
data = json.loads(value)
# Ensure time fields are present for all documents
data.setdefault("create_time", 0)
data.setdefault("update_time", 0)
result[key_id] = data
except json.JSONDecodeError as e:
logger.error(f"JSON decode error for key {key}: {e}")
continue
return result
except Exception as e:
logger.error(f"Error getting all data from Redis: {e}")
return {}
async def filter_keys(self, keys: set[str]) -> set[str]:
async with self._get_redis_connection() as redis:
pipe = redis.pipeline()
keys_list = list(keys) # Convert set to list for indexing
for key in keys_list:
pipe.exists(f"{self.namespace}:{key}")
results = await pipe.execute()
existing_ids = {keys_list[i] for i, exists in enumerate(results) if exists}
return set(keys) - existing_ids
@redis_retry
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
if not data:
return
import time
current_time = int(time.time()) # Get current Unix timestamp
async with self._get_redis_connection() as redis:
try:
# Check which keys already exist to determine create vs update
pipe = redis.pipeline()
for k in data.keys():
pipe.exists(f"{self.namespace}:{k}")
exists_results = await pipe.execute()
# Add timestamps to data
for i, (k, v) in enumerate(data.items()):
# For text_chunks namespace, ensure llm_cache_list field exists
if "text_chunks" in self.namespace:
if "llm_cache_list" not in v:
v["llm_cache_list"] = []
# Add timestamps based on whether key exists
if exists_results[i]: # Key exists, only update update_time
v["update_time"] = current_time
else: # New key, set both create_time and update_time
v["create_time"] = current_time
v["update_time"] = current_time
v["_id"] = k
# Store the data
pipe = redis.pipeline()
for k, v in data.items():
pipe.set(f"{self.namespace}:{k}", json.dumps(v))
await pipe.execute()
except json.JSONDecodeError as e:
logger.error(f"JSON decode error during upsert: {e}")
raise
async def index_done_callback(self) -> None:
# Redis handles persistence automatically
pass
async def delete(self, ids: list[str]) -> None:
"""Delete entries with specified IDs"""
if not ids:
return
async with self._get_redis_connection() as redis:
pipe = redis.pipeline()
for id in ids:
pipe.delete(f"{self.namespace}:{id}")
results = await pipe.execute()
deleted_count = sum(results)
logger.info(
f"Deleted {deleted_count} of {len(ids)} entries from {self.namespace}"
)
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
"""Delete specific records from storage by cache mode
Importance notes for Redis storage:
1. This will immediately delete the specified cache modes from Redis
Args:
modes (list[str]): List of cache modes to be dropped from storage
Returns:
True: if the cache drop successfully
False: if the cache drop failed
"""
if not modes:
return False
try:
async with self._get_redis_connection() as redis:
keys_to_delete = []
# Find matching keys for each mode using SCAN
for mode in modes:
# Use correct pattern to match flattened cache key format {namespace}:{mode}:{cache_type}:{hash}
pattern = f"{self.namespace}:{mode}:*"
cursor = 0
mode_keys = []
while True:
cursor, keys = await redis.scan(
cursor, match=pattern, count=1000
)
if keys:
mode_keys.extend(keys)
if cursor == 0:
break
keys_to_delete.extend(mode_keys)
logger.info(
f"Found {len(mode_keys)} keys for mode '{mode}' with pattern '{pattern}'"
)
if keys_to_delete:
# Batch delete
pipe = redis.pipeline()
for key in keys_to_delete:
pipe.delete(key)
results = await pipe.execute()
deleted_count = sum(results)
logger.info(
f"Dropped {deleted_count} cache entries for modes: {modes}"
)
else:
logger.warning(f"No cache entries found for modes: {modes}")
return True
except Exception as e:
logger.error(f"Error dropping cache by modes in Redis: {e}")
return False
async def drop(self) -> dict[str, str]:
"""Drop the storage by removing all keys under the current namespace.
Returns:
dict[str, str]: Status of the operation with keys 'status' and 'message'
"""
async with self._get_redis_connection() as redis:
try:
# Use SCAN to find all keys with the namespace prefix
pattern = f"{self.namespace}:*"
cursor = 0
deleted_count = 0
while True:
cursor, keys = await redis.scan(cursor, match=pattern, count=1000)
if keys:
# Delete keys in batches
pipe = redis.pipeline()
for key in keys:
pipe.delete(key)
results = await pipe.execute()
deleted_count += sum(results)
if cursor == 0:
break
logger.info(f"Dropped {deleted_count} keys from {self.namespace}")
return {
"status": "success",
"message": f"{deleted_count} keys dropped",
}
except Exception as e:
logger.error(f"Error dropping keys from {self.namespace}: {e}")
return {"status": "error", "message": str(e)}
async def _migrate_legacy_cache_structure(self):
"""Migrate legacy nested cache structure to flattened structure for Redis
Redis already stores data in a flattened way, but we need to check for
legacy keys that might contain nested JSON structures and migrate them.
Early exit if any flattened key is found (indicating migration already done).
"""
from lightrag.utils import generate_cache_key
async with self._get_redis_connection() as redis:
# Get all keys for this namespace
keys = await redis.keys(f"{self.namespace}:*")
if not keys:
return
# Check if we have any flattened keys already - if so, skip migration
has_flattened_keys = False
keys_to_migrate = []
for key in keys:
# Extract the ID part (after namespace:)
key_id = key.split(":", 1)[1]
# Check if already in flattened format (contains exactly 2 colons for mode:cache_type:hash)
if ":" in key_id and len(key_id.split(":")) == 3:
has_flattened_keys = True
break # Early exit - migration already done
# Get the data to check if it's a legacy nested structure
data = await redis.get(key)
if data:
try:
parsed_data = json.loads(data)
# Check if this looks like a legacy cache mode with nested structure
if isinstance(parsed_data, dict) and all(
isinstance(v, dict) and "return" in v
for v in parsed_data.values()
):
keys_to_migrate.append((key, key_id, parsed_data))
except json.JSONDecodeError:
continue
# If we found any flattened keys, assume migration is already done
if has_flattened_keys:
logger.debug(
f"Found flattened cache keys in {self.namespace}, skipping migration"
)
return
if not keys_to_migrate:
return
# Perform migration
pipe = redis.pipeline()
migration_count = 0
for old_key, mode, nested_data in keys_to_migrate:
# Delete the old key
pipe.delete(old_key)
# Create new flattened keys
for cache_hash, cache_entry in nested_data.items():
cache_type = cache_entry.get("cache_type", "extract")
flattened_key = generate_cache_key(mode, cache_type, cache_hash)
full_key = f"{self.namespace}:{flattened_key}"
pipe.set(full_key, json.dumps(cache_entry))
migration_count += 1
await pipe.execute()
if migration_count > 0:
logger.info(
f"Migrated {migration_count} legacy cache entries to flattened structure in Redis"
)
@final
@dataclass
class RedisDocStatusStorage(DocStatusStorage):
"""Redis implementation of document status storage"""
def __post_init__(self):
# Check for REDIS_WORKSPACE environment variable first (higher priority)
# This allows administrators to force a specific workspace for all Redis storage instances
redis_workspace = os.environ.get("REDIS_WORKSPACE")
if redis_workspace and redis_workspace.strip():
# Use environment variable value, overriding the passed workspace parameter
effective_workspace = redis_workspace.strip()
logger.info(
f"Using REDIS_WORKSPACE environment variable: '{effective_workspace}' (overriding passed workspace: '{self.workspace}')"
)
else:
# Use the workspace parameter passed during initialization
effective_workspace = self.workspace
if effective_workspace:
logger.debug(
f"Using passed workspace parameter: '{effective_workspace}'"
)
# Build namespace with workspace prefix for data isolation
if effective_workspace:
self.namespace = f"{effective_workspace}_{self.namespace}"
logger.debug(f"Final namespace with workspace prefix: '{self.namespace}'")
# When workspace is empty, keep the original namespace unchanged
self._redis_url = os.environ.get(
"REDIS_URI", config.get("redis", "uri", fallback="redis://localhost:6379")
)
self._pool = None
self._redis = None
self._initialized = False
try:
# Use shared connection pool
self._pool = RedisConnectionManager.get_pool(self._redis_url)
self._redis = Redis(connection_pool=self._pool)
logger.info(
f"Initialized Redis doc status storage for {self.namespace} using shared connection pool"
)
except Exception as e:
# Clean up on initialization failure
if self._redis_url:
RedisConnectionManager.release_pool(self._redis_url)
logger.error(f"Failed to initialize Redis doc status storage: {e}")
raise
async def initialize(self):
"""Initialize Redis connection"""
if self._initialized:
return
try:
async with self._get_redis_connection() as redis:
await redis.ping()
logger.info(
f"Connected to Redis for doc status namespace {self.namespace}"
)
self._initialized = True
except Exception as e:
logger.error(f"Failed to connect to Redis for doc status: {e}")
# Clean up on connection failure
await self.close()
raise
@asynccontextmanager
async def _get_redis_connection(self):
"""Safe context manager for Redis operations."""
if not self._redis:
raise ConnectionError("Redis connection not initialized")
try:
# Use the existing Redis instance with shared pool
yield self._redis
except ConnectionError as e:
logger.error(f"Redis connection error in doc status {self.namespace}: {e}")
raise
except RedisError as e:
logger.error(f"Redis operation error in doc status {self.namespace}: {e}")
raise
except Exception as e:
logger.error(
f"Unexpected error in Redis doc status operation for {self.namespace}: {e}"
)
raise
async def close(self):
"""Close the Redis connection and release pool reference to prevent resource leaks."""
if hasattr(self, "_redis") and self._redis:
try:
await self._redis.close()
logger.debug(f"Closed Redis connection for doc status {self.namespace}")
except Exception as e:
logger.error(f"Error closing Redis connection: {e}")
finally:
self._redis = None
# Release the pool reference (will auto-close pool if no more references)
if hasattr(self, "_redis_url") and self._redis_url:
RedisConnectionManager.release_pool(self._redis_url)
self._pool = None
logger.debug(
f"Released Redis connection pool reference for doc status {self.namespace}"
)
async def __aenter__(self):
"""Support for async context manager."""
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Ensure Redis resources are cleaned up when exiting context."""
await self.close()
async def filter_keys(self, keys: set[str]) -> set[str]:
"""Return keys that should be processed (not in storage or not successfully processed)"""
async with self._get_redis_connection() as redis:
pipe = redis.pipeline()
keys_list = list(keys)
for key in keys_list:
pipe.exists(f"{self.namespace}:{key}")
results = await pipe.execute()
existing_ids = {keys_list[i] for i, exists in enumerate(results) if exists}
return set(keys) - existing_ids
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
result: list[dict[str, Any]] = []
async with self._get_redis_connection() as redis:
try:
pipe = redis.pipeline()
for id in ids:
pipe.get(f"{self.namespace}:{id}")
results = await pipe.execute()
for result_data in results:
if result_data:
try:
result.append(json.loads(result_data))
except json.JSONDecodeError as e:
logger.error(f"JSON decode error in get_by_ids: {e}")
continue
except Exception as e:
logger.error(f"Error in get_by_ids: {e}")
return result
async def get_status_counts(self) -> dict[str, int]:
"""Get counts of documents in each status"""
counts = {status.value: 0 for status in DocStatus}
async with self._get_redis_connection() as redis:
try:
# Use SCAN to iterate through all keys in the namespace
cursor = 0
while True:
cursor, keys = await redis.scan(
cursor, match=f"{self.namespace}:*", count=1000
)
if keys:
# Get all values in batch
pipe = redis.pipeline()
for key in keys:
pipe.get(key)
values = await pipe.execute()
# Count statuses
for value in values:
if value:
try:
doc_data = json.loads(value)
status = doc_data.get("status")
if status in counts:
counts[status] += 1
except json.JSONDecodeError:
continue
if cursor == 0:
break
except Exception as e:
logger.error(f"Error getting status counts: {e}")
return counts
async def get_docs_by_status(
self, status: DocStatus
) -> dict[str, DocProcessingStatus]:
"""Get all documents with a specific status"""
result = {}
async with self._get_redis_connection() as redis:
try:
# Use SCAN to iterate through all keys in the namespace
cursor = 0
while True:
cursor, keys = await redis.scan(
cursor, match=f"{self.namespace}:*", count=1000
)
if keys:
# Get all values in batch
pipe = redis.pipeline()
for key in keys:
pipe.get(key)
values = await pipe.execute()
# Filter by status and create DocProcessingStatus objects
for key, value in zip(keys, values):
if value:
try:
doc_data = json.loads(value)
if doc_data.get("status") == status.value:
# Extract document ID from key
doc_id = key.split(":", 1)[1]
# Make a copy of the data to avoid modifying the original
data = doc_data.copy()
# Remove deprecated content field if it exists
data.pop("content", None)
# If file_path is not in data, use document id as file path
if "file_path" not in data:
data["file_path"] = "no-file-path"
# Ensure new fields exist with default values
if "metadata" not in data:
data["metadata"] = {}
if "error_msg" not in data:
data["error_msg"] = None
result[doc_id] = DocProcessingStatus(**data)
except (json.JSONDecodeError, KeyError) as e:
logger.error(
f"Error processing document {key}: {e}"
)
continue
if cursor == 0:
break
except Exception as e:
logger.error(f"Error getting docs by status: {e}")
return result
async def get_docs_by_track_id(
self, track_id: str
) -> dict[str, DocProcessingStatus]:
"""Get all documents with a specific track_id"""
result = {}
async with self._get_redis_connection() as redis:
try:
# Use SCAN to iterate through all keys in the namespace
cursor = 0
while True:
cursor, keys = await redis.scan(
cursor, match=f"{self.namespace}:*", count=1000
)
if keys:
# Get all values in batch
pipe = redis.pipeline()
for key in keys:
pipe.get(key)
values = await pipe.execute()
# Filter by track_id and create DocProcessingStatus objects
for key, value in zip(keys, values):
if value:
try:
doc_data = json.loads(value)
if doc_data.get("track_id") == track_id:
# Extract document ID from key
doc_id = key.split(":", 1)[1]
# Make a copy of the data to avoid modifying the original
data = doc_data.copy()
# Remove deprecated content field if it exists
data.pop("content", None)
# If file_path is not in data, use document id as file path
if "file_path" not in data:
data["file_path"] = "no-file-path"
# Ensure new fields exist with default values
if "metadata" not in data:
data["metadata"] = {}
if "error_msg" not in data:
data["error_msg"] = None
result[doc_id] = DocProcessingStatus(**data)
except (json.JSONDecodeError, KeyError) as e:
logger.error(
f"Error processing document {key}: {e}"
)
continue
if cursor == 0:
break
except Exception as e:
logger.error(f"Error getting docs by track_id: {e}")
return result
async def index_done_callback(self) -> None:
"""Redis handles persistence automatically"""
pass
@redis_retry
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
"""Insert or update document status data"""
if not data:
return
logger.debug(f"Inserting {len(data)} records to {self.namespace}")
async with self._get_redis_connection() as redis:
try:
# Ensure chunks_list field exists for new documents
for doc_id, doc_data in data.items():
if "chunks_list" not in doc_data:
doc_data["chunks_list"] = []
pipe = redis.pipeline()
for k, v in data.items():
pipe.set(f"{self.namespace}:{k}", json.dumps(v))
await pipe.execute()
except json.JSONDecodeError as e:
logger.error(f"JSON decode error during upsert: {e}")
raise
@redis_retry
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
async with self._get_redis_connection() as redis:
try:
data = await redis.get(f"{self.namespace}:{id}")
return json.loads(data) if data else None
except json.JSONDecodeError as e:
logger.error(f"JSON decode error for id {id}: {e}")
return None
async def delete(self, doc_ids: list[str]) -> None:
"""Delete specific records from storage by their IDs"""
if not doc_ids:
return
async with self._get_redis_connection() as redis:
pipe = redis.pipeline()
for doc_id in doc_ids:
pipe.delete(f"{self.namespace}:{doc_id}")
results = await pipe.execute()
deleted_count = sum(results)
logger.info(
f"Deleted {deleted_count} of {len(doc_ids)} doc status entries from {self.namespace}"
)
async def get_docs_paginated(
self,
status_filter: DocStatus | None = None,
page: int = 1,
page_size: int = 50,
sort_field: str = "updated_at",
sort_direction: str = "desc",
) -> tuple[list[tuple[str, DocProcessingStatus]], int]:
"""Get documents with pagination support
Args:
status_filter: Filter by document status, None for all statuses
page: Page number (1-based)
page_size: Number of documents per page (10-200)
sort_field: Field to sort by ('created_at', 'updated_at', 'id')
sort_direction: Sort direction ('asc' or 'desc')
Returns:
Tuple of (list of (doc_id, DocProcessingStatus) tuples, total_count)
"""
# Validate parameters
if page < 1:
page = 1
if page_size < 10:
page_size = 10
elif page_size > 200:
page_size = 200
if sort_field not in ["created_at", "updated_at", "id", "file_path"]:
sort_field = "updated_at"
if sort_direction.lower() not in ["asc", "desc"]:
sort_direction = "desc"
# For Redis, we need to load all data and sort/filter in memory
all_docs = []
total_count = 0
async with self._get_redis_connection() as redis:
try:
# Use SCAN to iterate through all keys in the namespace
cursor = 0
while True:
cursor, keys = await redis.scan(
cursor, match=f"{self.namespace}:*", count=1000
)
if keys:
# Get all values in batch
pipe = redis.pipeline()
for key in keys:
pipe.get(key)
values = await pipe.execute()
# Process documents
for key, value in zip(keys, values):
if value:
try:
doc_data = json.loads(value)
# Apply status filter
if (
status_filter is not None
and doc_data.get("status")
!= status_filter.value
):
continue
# Extract document ID from key
doc_id = key.split(":", 1)[1]
# Prepare document data
data = doc_data.copy()
data.pop("content", None)
if "file_path" not in data:
data["file_path"] = "no-file-path"
if "metadata" not in data:
data["metadata"] = {}
if "error_msg" not in data:
data["error_msg"] = None
# Calculate sort key for sorting (but don't add to data)
if sort_field == "id":
sort_key = doc_id
else:
sort_key = data.get(sort_field, "")
doc_status = DocProcessingStatus(**data)
all_docs.append((doc_id, doc_status, sort_key))
except (json.JSONDecodeError, KeyError) as e:
logger.error(
f"Error processing document {key}: {e}"
)
continue
if cursor == 0:
break
except Exception as e:
logger.error(f"Error getting paginated docs: {e}")
return [], 0
# Sort documents using the separate sort key
reverse_sort = sort_direction.lower() == "desc"
all_docs.sort(key=lambda x: x[2], reverse=reverse_sort)
# Remove sort key from tuples and keep only (doc_id, doc_status)
all_docs = [(doc_id, doc_status) for doc_id, doc_status, _ in all_docs]
total_count = len(all_docs)
# Apply pagination
start_idx = (page - 1) * page_size
end_idx = start_idx + page_size
paginated_docs = all_docs[start_idx:end_idx]
return paginated_docs, total_count
async def get_all_status_counts(self) -> dict[str, int]:
"""Get counts of documents in each status for all documents
Returns:
Dictionary mapping status names to counts, including 'all' field
"""
counts = await self.get_status_counts()
# Add 'all' field with total count
total_count = sum(counts.values())
counts["all"] = total_count
return counts
async def drop(self) -> dict[str, str]:
"""Drop all document status data from storage and clean up resources"""
try:
async with self._get_redis_connection() as redis:
# Use SCAN to find all keys with the namespace prefix
pattern = f"{self.namespace}:*"
cursor = 0
deleted_count = 0
while True:
cursor, keys = await redis.scan(cursor, match=pattern, count=1000)
if keys:
# Delete keys in batches
pipe = redis.pipeline()
for key in keys:
pipe.delete(key)
results = await pipe.execute()
deleted_count += sum(results)
if cursor == 0:
break
logger.info(
f"Dropped {deleted_count} doc status keys from {self.namespace}"
)
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(f"Error dropping doc status {self.namespace}: {e}")
return {"status": "error", "message": str(e)}