mirror of https://github.com/Jittor/Jittor
add cifar dataset
This commit is contained in:
parent
a7ced77f69
commit
16af6e7f8e
|
@ -9,7 +9,7 @@
|
|||
# file 'LICENSE.txt', which is part of this source code package.
|
||||
# ***************************************************************
|
||||
|
||||
__version__ = '1.2.3.27'
|
||||
__version__ = '1.2.3.28'
|
||||
from jittor_utils import lock
|
||||
with lock.lock_scope():
|
||||
ori_int = int
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
|
||||
from .dataset import Dataset, ImageFolder
|
||||
from .mnist import MNIST
|
||||
from .cifar import CIFAR10, CIFAR100
|
||||
from .voc import VOC
|
||||
from .sampler import *
|
|
@ -0,0 +1,244 @@
|
|||
from .dataset import Dataset, dataset_root
|
||||
import os
|
||||
import gzip
|
||||
import tarfile
|
||||
import zipfile
|
||||
from jittor_utils.misc import download_url_to_local, check_md5
|
||||
from PIL import Image
|
||||
import sys, pickle
|
||||
|
||||
|
||||
def check_integrity(fpath, md5=None):
|
||||
if not os.path.isfile(fpath):
|
||||
return False
|
||||
if md5 is None:
|
||||
return True
|
||||
return check_md5(fpath, md5)
|
||||
|
||||
def _is_tarxz(filename):
|
||||
return filename.endswith(".tar.xz")
|
||||
|
||||
|
||||
def _is_tar(filename):
|
||||
return filename.endswith(".tar")
|
||||
|
||||
|
||||
def _is_targz(filename):
|
||||
return filename.endswith(".tar.gz")
|
||||
|
||||
|
||||
def _is_tgz(filename):
|
||||
return filename.endswith(".tgz")
|
||||
|
||||
|
||||
def _is_gzip(filename):
|
||||
return filename.endswith(".gz") and not filename.endswith(".tar.gz")
|
||||
|
||||
|
||||
def _is_zip(filename):
|
||||
return filename.endswith(".zip")
|
||||
|
||||
|
||||
def extract_archive(from_path, to_path=None, remove_finished=False):
|
||||
if to_path is None:
|
||||
to_path = os.path.dirname(from_path)
|
||||
|
||||
if _is_tar(from_path):
|
||||
with tarfile.open(from_path, 'r') as tar:
|
||||
tar.extractall(path=to_path)
|
||||
elif _is_targz(from_path) or _is_tgz(from_path):
|
||||
with tarfile.open(from_path, 'r:gz') as tar:
|
||||
tar.extractall(path=to_path)
|
||||
elif _is_tarxz(from_path):
|
||||
# .tar.xz archive only supported in Python 3.x
|
||||
with tarfile.open(from_path, 'r:xz') as tar:
|
||||
tar.extractall(path=to_path)
|
||||
elif _is_gzip(from_path):
|
||||
to_path = os.path.join(to_path, os.path.splitext(os.path.basename(from_path))[0])
|
||||
with open(to_path, "wb") as out_f, gzip.GzipFile(from_path) as zip_f:
|
||||
out_f.write(zip_f.read())
|
||||
elif _is_zip(from_path):
|
||||
with zipfile.ZipFile(from_path, 'r') as z:
|
||||
z.extractall(to_path)
|
||||
else:
|
||||
raise ValueError("Extraction of {} not supported".format(from_path))
|
||||
|
||||
if remove_finished:
|
||||
os.remove(from_path)
|
||||
|
||||
|
||||
def download_and_extract_archive(url, download_root, extract_root=None, filename=None,
|
||||
md5=None, remove_finished=False):
|
||||
download_root = os.path.expanduser(download_root)
|
||||
if extract_root is None:
|
||||
extract_root = download_root
|
||||
if not filename:
|
||||
filename = os.path.basename(url)
|
||||
|
||||
download_url_to_local(url, filename, download_root, md5)
|
||||
|
||||
archive = os.path.join(download_root, filename)
|
||||
print("Extracting {} to {}".format(archive, extract_root))
|
||||
extract_archive(archive, extract_root, remove_finished)
|
||||
|
||||
|
||||
class CIFAR10(Dataset):
|
||||
"""`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
|
||||
|
||||
Args:
|
||||
root (string): Root directory of dataset where directory
|
||||
``cifar-10-batches-py`` exists or will be saved to if download is set to True.
|
||||
train (bool, optional): If True, creates dataset from training set, otherwise
|
||||
creates from test set.
|
||||
transform (callable, optional): A function/transform that takes in an PIL image
|
||||
and returns a transformed version. E.g, ``transforms.RandomCrop``
|
||||
target_transform (callable, optional): A function/transform that takes in the
|
||||
target and transforms it.
|
||||
download (bool, optional): If true, downloads the dataset from the internet and
|
||||
puts it in root directory. If dataset is already downloaded, it is not
|
||||
downloaded again.
|
||||
|
||||
"""
|
||||
base_folder = 'cifar-10-batches-py'
|
||||
url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
|
||||
filename = "cifar-10-python.tar.gz"
|
||||
tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
|
||||
train_list = [
|
||||
['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
|
||||
['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
|
||||
['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
|
||||
['data_batch_4', '634d18415352ddfa80567beed471001a'],
|
||||
['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
|
||||
]
|
||||
|
||||
test_list = [
|
||||
['test_batch', '40351d587109b95175f43aff81a1287e'],
|
||||
]
|
||||
meta = {
|
||||
'filename': 'batches.meta',
|
||||
'key': 'label_names',
|
||||
'md5': '5ff9c542aee3614f3951f8cda6e48888',
|
||||
}
|
||||
|
||||
def __init__(self, root=dataset_root+"/cifar_data/", train=True, transform=None, target_transform=None,
|
||||
download=True):
|
||||
|
||||
super(CIFAR10, self).__init__()
|
||||
self.root = root
|
||||
self.transform=transform
|
||||
self.target_transform=target_transform
|
||||
|
||||
self.train = train # training set or test set
|
||||
|
||||
if download:
|
||||
self.download()
|
||||
|
||||
if not self._check_integrity():
|
||||
raise RuntimeError('Dataset not found or corrupted.' +
|
||||
' You can use download=True to download it')
|
||||
|
||||
if self.train:
|
||||
downloaded_list = self.train_list
|
||||
else:
|
||||
downloaded_list = self.test_list
|
||||
|
||||
self.data = []
|
||||
self.targets = []
|
||||
|
||||
# now load the picked numpy arrays
|
||||
for file_name, checksum in downloaded_list:
|
||||
file_path = os.path.join(self.root, self.base_folder, file_name)
|
||||
with open(file_path, 'rb') as f:
|
||||
if sys.version_info[0] == 2:
|
||||
entry = pickle.load(f)
|
||||
else:
|
||||
entry = pickle.load(f, encoding='latin1')
|
||||
self.data.append(entry['data'])
|
||||
if 'labels' in entry:
|
||||
self.targets.extend(entry['labels'])
|
||||
else:
|
||||
self.targets.extend(entry['fine_labels'])
|
||||
|
||||
self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
|
||||
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
|
||||
|
||||
self._load_meta()
|
||||
|
||||
def _load_meta(self):
|
||||
path = os.path.join(self.root, self.base_folder, self.meta['filename'])
|
||||
if not check_integrity(path, self.meta['md5']):
|
||||
raise RuntimeError('Dataset metadata file not found or corrupted.' +
|
||||
' You can use download=True to download it')
|
||||
with open(path, 'rb') as infile:
|
||||
if sys.version_info[0] == 2:
|
||||
data = pickle.load(infile)
|
||||
else:
|
||||
data = pickle.load(infile, encoding='latin1')
|
||||
self.classes = data[self.meta['key']]
|
||||
self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)}
|
||||
|
||||
def __getitem__(self, index):
|
||||
"""
|
||||
Args:
|
||||
index (int): Index
|
||||
|
||||
Returns:
|
||||
tuple: (image, target) where target is index of the target class.
|
||||
"""
|
||||
img, target = self.data[index], self.targets[index]
|
||||
|
||||
# doing this so that it is consistent with all other datasets
|
||||
# to return a PIL Image
|
||||
img = Image.fromarray(img)
|
||||
|
||||
if self.transform is not None:
|
||||
img = self.transform(img)
|
||||
|
||||
if self.target_transform is not None:
|
||||
target = self.target_transform(target)
|
||||
|
||||
return img, target
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def _check_integrity(self):
|
||||
root = self.root
|
||||
for fentry in (self.train_list + self.test_list):
|
||||
filename, md5 = fentry[0], fentry[1]
|
||||
fpath = os.path.join(root, self.base_folder, filename)
|
||||
if not check_integrity(fpath, md5):
|
||||
return False
|
||||
return True
|
||||
|
||||
def download(self):
|
||||
if self._check_integrity():
|
||||
print('Files already downloaded and verified')
|
||||
return
|
||||
download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
|
||||
|
||||
def extra_repr(self):
|
||||
return "Split: {}".format("Train" if self.train is True else "Test")
|
||||
|
||||
|
||||
class CIFAR100(CIFAR10):
|
||||
"""`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
|
||||
|
||||
This is a subclass of the `CIFAR10` Dataset.
|
||||
"""
|
||||
base_folder = 'cifar-100-python'
|
||||
url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
|
||||
filename = "cifar-100-python.tar.gz"
|
||||
tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
|
||||
train_list = [
|
||||
['train', '16019d7e3df5f24257cddd939b257f8d'],
|
||||
]
|
||||
|
||||
test_list = [
|
||||
['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
|
||||
]
|
||||
meta = {
|
||||
'filename': 'meta',
|
||||
'key': 'fine_label_names',
|
||||
'md5': '7973b15100ade9c7d40fb424638fde48',
|
||||
}
|
|
@ -161,6 +161,14 @@ class TestDatasetSeed(unittest.TestCase):
|
|||
for i in range(len(d)):
|
||||
for j in range(i+1, len(d)):
|
||||
assert not np.allclose(dd[i], dd[j])
|
||||
|
||||
def test_cifar(self):
|
||||
from jittor.dataset.cifar import CIFAR10
|
||||
a = CIFAR10()
|
||||
a.set_attr(batch_size=16)
|
||||
for imgs, lables in a:
|
||||
print(imgs.shape)
|
||||
break
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in New Issue