mirror of https://github.com/Jittor/Jittor
copy `jittor.attention` from jittor official repo
This commit is contained in:
parent
cc3b402913
commit
23abcda711
|
@ -9,168 +9,576 @@
|
|||
# file 'LICENSE.txt', which is part of this source code package.
|
||||
# ***************************************************************
|
||||
|
||||
import jittor as jt
|
||||
from jittor import init, Module, nn
|
||||
import numpy as np
|
||||
from typing import Optional, Tuple, List
|
||||
import warnings
|
||||
import math
|
||||
|
||||
import jittor as jt
|
||||
from jittor import Var
|
||||
from jittor.nn import Module, Linear, softmax, pad, linear, dropout
|
||||
from jittor.init import xavier_uniform_, xavier_gauss_, constant_
|
||||
|
||||
def _canonical_mask(
|
||||
mask: Optional[Var],
|
||||
mask_name: str,
|
||||
other_type,
|
||||
other_name: str,
|
||||
target_type,
|
||||
check_other: bool = True,
|
||||
) -> Optional[Var]:
|
||||
|
||||
if mask is not None:
|
||||
_mask_dtype = mask.dtype
|
||||
_mask_is_float = mask.dtype == jt.float16 or mask.dtype == jt.float32 or mask.dtype == jt.float64
|
||||
if _mask_dtype != jt.bool and not _mask_is_float:
|
||||
raise AssertionError(
|
||||
f"only bool and floating types of {mask_name} are supported")
|
||||
if check_other and other_type is not None:
|
||||
if _mask_dtype != other_type:
|
||||
warnings.warn(
|
||||
f"Support for mismatched {mask_name} and {other_name} "
|
||||
"is deprecated. Use same type for both instead."
|
||||
)
|
||||
if not _mask_is_float:
|
||||
# WARNING(514flowey): Check Here
|
||||
new_mask = jt.zeros_like(mask, dtype=target_type)
|
||||
new_mask[mask] = float("-inf")
|
||||
mask = new_mask
|
||||
return mask
|
||||
|
||||
def _none_or_dtype(input: Optional[Var]):
|
||||
if input is None:
|
||||
return None
|
||||
elif isinstance(input, jt.Var):
|
||||
return input.dtype
|
||||
raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor")
|
||||
|
||||
def baddbmm(input_var:jt.Var, batch1:jt.Var, batch2:jt.Var, beta=1, alpha=1) -> jt.Var:
|
||||
# WARNING(514flowey): Check here
|
||||
return beta * input_var + alpha * (batch1 @ batch2)
|
||||
|
||||
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> jt.Var:
|
||||
# Efficient implementation equivalent to the following:
|
||||
L, S = query.size(-2), key.size(-2)
|
||||
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
||||
attn_bias = jt.zeros(L, S, dtype=query.dtype)
|
||||
if is_causal:
|
||||
assert attn_mask is None
|
||||
temp_mask = jt.ones(L, S, dtype=jt.bool).tril(diagonal=0)
|
||||
attn_bias[jt.logical_not(temp_mask)] = float("-inf")
|
||||
# attn_bias.to(query.dtype)
|
||||
attn_bias = jt.array(attn_bias, query.dtype)
|
||||
|
||||
if attn_mask is not None:
|
||||
if attn_mask.dtype == jt.bool:
|
||||
attn_bias[jt.logical_not(temp_mask)] = float("-inf")
|
||||
else:
|
||||
attn_bias += attn_mask
|
||||
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
||||
attn_weight += attn_bias
|
||||
attn_weight = softmax(attn_weight, dim=-1)
|
||||
# attn_weight = dropout(attn_weight, dropout_p, train=True)
|
||||
attn_weight = dropout(attn_weight, dropout_p, is_train=True)
|
||||
return attn_weight @ value
|
||||
|
||||
def _mha_shape_check(query: Var, key: Var, value: Var,
|
||||
key_padding_mask: Optional[Var], attn_mask: Optional[Var], num_heads: int):
|
||||
if query.dim() == 3:
|
||||
is_batched = True
|
||||
assert key.dim() == 3 and value.dim() == 3, \
|
||||
("For batched (3-D) `query`, expected `key` and `value` to be 3-D"
|
||||
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
|
||||
if key_padding_mask is not None:
|
||||
assert key_padding_mask.dim() == 2, \
|
||||
("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
|
||||
f" but found {key_padding_mask.dim()}-D tensor instead")
|
||||
if attn_mask is not None:
|
||||
assert attn_mask.dim() in (2, 3), \
|
||||
("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
|
||||
f" but found {attn_mask.dim()}-D tensor instead")
|
||||
elif query.dim() == 2:
|
||||
is_batched = False
|
||||
assert key.dim() == 2 and value.dim() == 2, \
|
||||
("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
|
||||
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
|
||||
|
||||
if key_padding_mask is not None:
|
||||
assert key_padding_mask.dim() == 1, \
|
||||
("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
|
||||
f" but found {key_padding_mask.dim()}-D tensor instead")
|
||||
|
||||
if attn_mask is not None:
|
||||
assert attn_mask.dim() in (2, 3), \
|
||||
("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
|
||||
f" but found {attn_mask.dim()}-D tensor instead")
|
||||
if attn_mask.dim() == 3:
|
||||
expected_shape = (num_heads, query.shape[0], key.shape[0])
|
||||
assert attn_mask.shape == expected_shape, \
|
||||
(f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}")
|
||||
else:
|
||||
raise AssertionError(
|
||||
f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor")
|
||||
|
||||
return is_batched
|
||||
|
||||
def _in_projection_packed(
|
||||
q: Var,
|
||||
k: Var,
|
||||
v: Var,
|
||||
w: Var,
|
||||
b: Optional[Var] = None,
|
||||
) -> List[Var]:
|
||||
E = q.size(-1)
|
||||
if k is v:
|
||||
if q is k:
|
||||
# self-attention
|
||||
proj = linear(q, w, b)
|
||||
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
|
||||
# proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
||||
nshape = proj.shape[:-1] + (3, E)
|
||||
proj = proj.reshape(nshape).unsqueeze(0).transpose(0, -2).squeeze(-2)
|
||||
return proj[0], proj[1], proj[2]
|
||||
else:
|
||||
# encoder-decoder attention
|
||||
w_q, w_kv = w.split([E, E * 2])
|
||||
if b is None:
|
||||
b_q = b_kv = None
|
||||
else:
|
||||
b_q, b_kv = b.split([E, E * 2])
|
||||
q_proj = linear(q, w_q, b_q)
|
||||
kv_proj = linear(k, w_kv, b_kv)
|
||||
# reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
|
||||
# kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
||||
nshape = kv_proj.shape[:-1] + (2, E)
|
||||
kv_proj = kv_proj.reshape(nshape).unsqueeze(0).transpose(0, -2).squeeze(-2)
|
||||
return (q_proj, kv_proj[0], kv_proj[1])
|
||||
else:
|
||||
w_q, w_k, w_v = w.chunk(3)
|
||||
if b is None:
|
||||
b_q = b_k = b_v = None
|
||||
else:
|
||||
b_q, b_k, b_v = b.chunk(3)
|
||||
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
||||
|
||||
def _in_projection(
|
||||
q: Var,
|
||||
k: Var,
|
||||
v: Var,
|
||||
w_q: Var,
|
||||
w_k: Var,
|
||||
w_v: Var,
|
||||
b_q: Optional[Var] = None,
|
||||
b_k: Optional[Var] = None,
|
||||
b_v: Optional[Var] = None,
|
||||
) -> Tuple[Var, Var, Var]:
|
||||
Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
|
||||
assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
|
||||
assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
|
||||
assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
|
||||
assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
|
||||
assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
|
||||
assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
|
||||
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
||||
|
||||
def multi_head_attention_forward(
|
||||
query: Var,
|
||||
key: Var,
|
||||
value: Var,
|
||||
embed_dim_to_check: int,
|
||||
num_heads: int,
|
||||
in_proj_weight: Optional[Var],
|
||||
in_proj_bias: Optional[Var],
|
||||
bias_k: Optional[Var],
|
||||
bias_v: Optional[Var],
|
||||
add_zero_attn: bool,
|
||||
dropout_p: float,
|
||||
out_proj_weight: Var,
|
||||
out_proj_bias: Optional[Var],
|
||||
training: bool = True,
|
||||
key_padding_mask: Optional[Var] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Var] = None,
|
||||
use_separate_proj_weight: bool = False,
|
||||
q_proj_weight: Optional[Var] = None,
|
||||
k_proj_weight: Optional[Var] = None,
|
||||
v_proj_weight: Optional[Var] = None,
|
||||
static_k: Optional[Var] = None,
|
||||
static_v: Optional[Var] = None,
|
||||
average_attn_weights: bool = True,
|
||||
is_causal: bool = False,
|
||||
) -> Tuple[Var, Optional[Var]]:
|
||||
|
||||
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
|
||||
|
||||
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
|
||||
# is batched, run the computation and before returning squeeze the
|
||||
# batch dimension so that the output doesn't carry this temporary batch dimension.
|
||||
if not is_batched:
|
||||
# unsqueeze if the input is unbatched
|
||||
query = query.unsqueeze(1)
|
||||
key = key.unsqueeze(1)
|
||||
value = value.unsqueeze(1)
|
||||
if key_padding_mask is not None:
|
||||
key_padding_mask = key_padding_mask.unsqueeze(0)
|
||||
|
||||
# set up shape vars
|
||||
tgt_len, bsz, embed_dim = query.shape
|
||||
src_len, _, _ = key.shape
|
||||
|
||||
key_padding_mask = _canonical_mask(
|
||||
mask=key_padding_mask,
|
||||
mask_name="key_padding_mask",
|
||||
other_type=_none_or_dtype(attn_mask),
|
||||
other_name="attn_mask",
|
||||
target_type=query.dtype
|
||||
)
|
||||
|
||||
if is_causal and attn_mask is None:
|
||||
raise RuntimeError(
|
||||
"Need attn_mask if specifying the is_causal hint. "
|
||||
"You may use the Transformer module method "
|
||||
"`generate_square_subsequent_mask` to create this mask."
|
||||
)
|
||||
|
||||
if is_causal and key_padding_mask is None and not need_weights:
|
||||
# when we have a kpm or need weights, we need attn_mask
|
||||
# Otherwise, we use the is_causal hint go as is_causal
|
||||
# indicator to SDPA.
|
||||
attn_mask = None
|
||||
else:
|
||||
attn_mask = _canonical_mask(
|
||||
mask=attn_mask,
|
||||
mask_name="attn_mask",
|
||||
other_type=None,
|
||||
other_name="",
|
||||
target_type=query.dtype,
|
||||
check_other=False,
|
||||
)
|
||||
|
||||
if key_padding_mask is not None:
|
||||
# We have the attn_mask, and use that to merge kpm into it.
|
||||
# Turn off use of is_causal hint, as the merged mask is no
|
||||
# longer causal.
|
||||
is_causal = False
|
||||
|
||||
assert embed_dim == embed_dim_to_check, \
|
||||
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
||||
if isinstance(embed_dim, jt.Var):
|
||||
# embed_dim can be a tensor when JIT tracing
|
||||
head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
|
||||
else:
|
||||
head_dim = embed_dim // num_heads
|
||||
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
||||
if use_separate_proj_weight:
|
||||
# allow MHA to have different embedding dimensions when separate projection weights are used
|
||||
assert key.shape[:2] == value.shape[:2], \
|
||||
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
||||
else:
|
||||
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
|
||||
|
||||
#
|
||||
# compute in-projection
|
||||
#
|
||||
if not use_separate_proj_weight:
|
||||
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
|
||||
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
|
||||
else:
|
||||
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
|
||||
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
|
||||
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
|
||||
if in_proj_bias is None:
|
||||
b_q = b_k = b_v = None
|
||||
else:
|
||||
b_q, b_k, b_v = in_proj_bias.chunk(3)
|
||||
q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
|
||||
|
||||
# prep attention mask
|
||||
|
||||
if attn_mask is not None:
|
||||
# ensure attn_mask's dim is 3
|
||||
if attn_mask.dim() == 2:
|
||||
correct_2d_size = (tgt_len, src_len)
|
||||
if attn_mask.shape != correct_2d_size:
|
||||
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
elif attn_mask.dim() == 3:
|
||||
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
|
||||
if attn_mask.shape != correct_3d_size:
|
||||
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
|
||||
else:
|
||||
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
|
||||
|
||||
# add bias along batch dimension (currently second)
|
||||
if bias_k is not None and bias_v is not None:
|
||||
assert static_k is None, "bias cannot be added to static key."
|
||||
assert static_v is None, "bias cannot be added to static value."
|
||||
k = jt.concat([k, bias_k.repeat(1, bsz, 1)])
|
||||
v = jt.concat([v, bias_v.repeat(1, bsz, 1)])
|
||||
if attn_mask is not None:
|
||||
attn_mask = pad(attn_mask, (0, 1))
|
||||
if key_padding_mask is not None:
|
||||
key_padding_mask = pad(key_padding_mask, (0, 1))
|
||||
else:
|
||||
assert bias_k is None
|
||||
assert bias_v is None
|
||||
|
||||
#
|
||||
# reshape q, k, v for multihead attention and make em batch first
|
||||
#
|
||||
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
||||
if static_k is None:
|
||||
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
||||
else:
|
||||
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
||||
assert static_k.size(0) == bsz * num_heads, \
|
||||
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
||||
assert static_k.size(2) == head_dim, \
|
||||
f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
||||
k = static_k
|
||||
if static_v is None:
|
||||
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
||||
else:
|
||||
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
||||
assert static_v.size(0) == bsz * num_heads, \
|
||||
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
||||
assert static_v.size(2) == head_dim, \
|
||||
f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
||||
v = static_v
|
||||
|
||||
# add zero attention along batch dimension (now first)
|
||||
if add_zero_attn:
|
||||
zero_attn_shape = (bsz * num_heads, 1, head_dim)
|
||||
k = jt.concat([k, jt.zeros(zero_attn_shape, dtype=k.dtype)], dim=1)
|
||||
v = jt.concat([v, jt.zeros(zero_attn_shape, dtype=v.dtype)], dim=1)
|
||||
if attn_mask is not None:
|
||||
attn_mask = pad(attn_mask, (0, 1))
|
||||
if key_padding_mask is not None:
|
||||
key_padding_mask = pad(key_padding_mask, (0, 1))
|
||||
|
||||
# update source sequence length after adjustments
|
||||
src_len = k.size(1)
|
||||
|
||||
# merge key padding and attention masks
|
||||
if key_padding_mask is not None:
|
||||
assert key_padding_mask.shape == (bsz, src_len), \
|
||||
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
||||
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
|
||||
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
|
||||
if attn_mask is None:
|
||||
attn_mask = key_padding_mask
|
||||
else:
|
||||
attn_mask = attn_mask + key_padding_mask
|
||||
|
||||
# adjust dropout probability
|
||||
if not training:
|
||||
dropout_p = 0.0
|
||||
|
||||
#
|
||||
# (deep breath) calculate attention and out projection
|
||||
#
|
||||
|
||||
if need_weights:
|
||||
B, Nt, E = q.shape
|
||||
q_scaled = q / math.sqrt(E)
|
||||
|
||||
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
|
||||
|
||||
if attn_mask is not None:
|
||||
attn_output_weights = baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
|
||||
else:
|
||||
attn_output_weights = jt.bmm(q_scaled, k.transpose(-2, -1))
|
||||
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
||||
if dropout_p > 0.0:
|
||||
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
|
||||
|
||||
attn_output = jt.bmm(attn_output_weights, v)
|
||||
|
||||
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
||||
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
||||
|
||||
# optionally average attention weights over heads
|
||||
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
||||
if average_attn_weights:
|
||||
attn_output_weights = attn_output_weights.mean(dim=1)
|
||||
|
||||
if not is_batched:
|
||||
# squeeze the output if input was unbatched
|
||||
attn_output = attn_output.squeeze(1)
|
||||
attn_output_weights = attn_output_weights.squeeze(0)
|
||||
return attn_output, attn_output_weights
|
||||
else:
|
||||
# attn_mask can be either (L,S) or (N*num_heads, L, S)
|
||||
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
|
||||
# in order to match the input for SDPA of (N, num_heads, L, S)
|
||||
if attn_mask is not None:
|
||||
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
else:
|
||||
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
|
||||
|
||||
q = q.view(bsz, num_heads, tgt_len, head_dim)
|
||||
k = k.view(bsz, num_heads, src_len, head_dim)
|
||||
v = v.view(bsz, num_heads, src_len, head_dim)
|
||||
|
||||
attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
|
||||
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
||||
|
||||
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
||||
if not is_batched:
|
||||
# squeeze the output if input was unbatched
|
||||
attn_output = attn_output.squeeze(1)
|
||||
return attn_output, None
|
||||
|
||||
|
||||
class MultiheadAttention(Module):
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim,
|
||||
num_heads,
|
||||
kdim=None,
|
||||
vdim=None,
|
||||
dropout=0.0,
|
||||
bias=True,
|
||||
add_bias_kv=False,
|
||||
add_zero_attn=False,
|
||||
self_attention=False,
|
||||
encoder_decoder_attention=False,
|
||||
q_noise=0.0,
|
||||
qn_block_size=8,
|
||||
):
|
||||
__constants__ = ['batch_first']
|
||||
bias_k: Optional[jt.Var]
|
||||
bias_v: Optional[jt.Var]
|
||||
|
||||
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
|
||||
kdim=None, vdim=None, batch_first=False, dtype=jt.float32) -> None:
|
||||
if embed_dim <= 0 or num_heads <= 0:
|
||||
raise ValueError(
|
||||
f"embed_dim and num_heads must be greater than 0,"
|
||||
f" got embed_dim={embed_dim} and num_heads={num_heads} instead"
|
||||
)
|
||||
factory_kwargs = {'dtype': dtype}
|
||||
super().__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.kdim = kdim if kdim is not None else embed_dim
|
||||
self.vdim = vdim if vdim is not None else embed_dim
|
||||
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
||||
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
||||
|
||||
self.num_heads = num_heads
|
||||
assert dropout==0, "TODO: dropout>0"
|
||||
|
||||
self.dropout = dropout
|
||||
self.batch_first = batch_first
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert (self.head_dim * num_heads == self.embed_dim), "embed_dim must be divisible by num_heads"
|
||||
self.scaling = self.head_dim ** -0.5
|
||||
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
||||
|
||||
self.self_attention = self_attention
|
||||
self.encoder_decoder_attention = encoder_decoder_attention
|
||||
if not self._qkv_same_embed_dim:
|
||||
self.q_proj_weight = jt.empty((embed_dim, embed_dim), **factory_kwargs)
|
||||
self.k_proj_weight = jt.empty((embed_dim, self.kdim), **factory_kwargs)
|
||||
self.v_proj_weight = jt.empty((embed_dim, self.vdim), **factory_kwargs)
|
||||
self.in_proj_weight = None
|
||||
else:
|
||||
self.q_proj_weight = None
|
||||
self.k_proj_weight = None
|
||||
self.v_proj_weight = None
|
||||
self.in_proj_weight = jt.empty((3 * embed_dim, embed_dim), **factory_kwargs)
|
||||
|
||||
assert not self.self_attention or self.qkv_same_dim, ("Self-attention requires query, key and " "value to be of the same size")
|
||||
if bias:
|
||||
self.in_proj_bias = jt.empty(3 * embed_dim, **factory_kwargs)
|
||||
else:
|
||||
self.in_proj_bias = None
|
||||
self.out_proj = Linear(embed_dim, embed_dim, bias=bias)
|
||||
|
||||
#TODO: quant_noise
|
||||
self.k_proj = nn.Linear(self.kdim, embed_dim, bias=bias)
|
||||
self.v_proj = nn.Linear(self.vdim, embed_dim, bias=bias)
|
||||
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||||
|
||||
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||||
|
||||
assert not add_bias_kv, "TODO: add_bias_kv=True"
|
||||
self.bias_k = self.bias_v = None
|
||||
if add_bias_kv:
|
||||
self.bias_k = jt.empty((1, 1, embed_dim), **factory_kwargs)
|
||||
self.bias_v = jt.empty((1, 1, embed_dim), **factory_kwargs)
|
||||
else:
|
||||
self.bias_k = self.bias_v = None
|
||||
|
||||
self.add_zero_attn = add_zero_attn
|
||||
|
||||
self.reset_parameters()
|
||||
self._reset_parameters()
|
||||
|
||||
self.onnx_trace = False
|
||||
self.tpu = False
|
||||
|
||||
def reset_parameters(self):
|
||||
if self.qkv_same_dim:
|
||||
# Empirically observed the convergence to be much better with
|
||||
# the scaled initialization
|
||||
init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
|
||||
init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
|
||||
init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
|
||||
def _reset_parameters(self):
|
||||
if self._qkv_same_embed_dim:
|
||||
xavier_uniform_(self.in_proj_weight)
|
||||
else:
|
||||
init.xavier_uniform_(self.k_proj.weight)
|
||||
init.xavier_uniform_(self.v_proj.weight)
|
||||
init.xavier_uniform_(self.q_proj.weight)
|
||||
xavier_uniform_(self.q_proj_weight)
|
||||
xavier_uniform_(self.k_proj_weight)
|
||||
xavier_uniform_(self.v_proj_weight)
|
||||
|
||||
# init.xavier_uniform_(self.out_proj.weight)
|
||||
if self.out_proj.bias is not None:
|
||||
init.constant_(self.out_proj.bias, 0.)
|
||||
if self.in_proj_bias is not None:
|
||||
constant_(self.in_proj_bias, 0.)
|
||||
constant_(self.out_proj.bias, 0.)
|
||||
if self.bias_k is not None:
|
||||
init.xavier_normal_(self.bias_k)
|
||||
xavier_gauss_(self.bias_k)
|
||||
if self.bias_v is not None:
|
||||
init.xavier_normal_(self.bias_v)
|
||||
xavier_gauss_(self.bias_v)
|
||||
|
||||
def __setstate__(self, state):
|
||||
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
||||
if '_qkv_same_embed_dim' not in state:
|
||||
state['_qkv_same_embed_dim'] = True
|
||||
|
||||
super().__setstate__(state)
|
||||
|
||||
def execute(
|
||||
self,
|
||||
query,
|
||||
key = None,
|
||||
value = None,
|
||||
key_padding_mask = None,
|
||||
incremental_state = None,
|
||||
need_weights = True,
|
||||
static_kv = False,
|
||||
attn_mask = None,
|
||||
before_softmax = False,
|
||||
need_head_weights = False,
|
||||
):
|
||||
if need_head_weights:
|
||||
need_weights = True
|
||||
self,
|
||||
query: Var,
|
||||
key: Var,
|
||||
value: Var,
|
||||
key_padding_mask: Optional[Var] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Var] = None,
|
||||
average_attn_weights: bool = True,
|
||||
is_causal : bool = False) -> Tuple[Var, Optional[Var]]:
|
||||
|
||||
tgt_len, bsz, embed_dim = query.shape
|
||||
assert embed_dim == self.embed_dim
|
||||
assert list(query.shape) == [tgt_len, bsz, embed_dim]
|
||||
#####
|
||||
# Fast Path is not Supported.
|
||||
#####
|
||||
|
||||
assert incremental_state is None, "TODO: incremental_state is not None"
|
||||
saved_state = None
|
||||
is_batched = query.dim() == 3
|
||||
|
||||
if self.self_attention:
|
||||
q = self.q_proj(query)
|
||||
k = self.k_proj(query)
|
||||
v = self.v_proj(query)
|
||||
elif self.encoder_decoder_attention:
|
||||
# encoder-decoder attention
|
||||
q = self.q_proj(query)
|
||||
if key is None:
|
||||
assert value is None
|
||||
k = v = None
|
||||
key_padding_mask = _canonical_mask(
|
||||
mask=key_padding_mask,
|
||||
mask_name="key_padding_mask",
|
||||
other_type=_none_or_dtype(attn_mask),
|
||||
other_name="attn_mask",
|
||||
target_type=query.dtype
|
||||
)
|
||||
|
||||
attn_mask = _canonical_mask(
|
||||
mask=attn_mask,
|
||||
mask_name="attn_mask",
|
||||
other_type=None,
|
||||
other_name="",
|
||||
target_type=query.dtype,
|
||||
check_other=False,
|
||||
)
|
||||
|
||||
if self.batch_first and is_batched:
|
||||
# make sure that the transpose op does not affect the "is" property
|
||||
if key is value:
|
||||
if query is key:
|
||||
query = key = value = query.transpose(1, 0)
|
||||
else:
|
||||
query, key = (x.transpose(1, 0) for x in (query, key))
|
||||
value = key
|
||||
else:
|
||||
k = self.k_proj(key)
|
||||
v = self.v_proj(key)
|
||||
query, key, value = (x.transpose(1, 0) for x in (query, key, value))
|
||||
|
||||
if not self._qkv_same_embed_dim:
|
||||
attn_output, attn_output_weights = multi_head_attention_forward(
|
||||
query, key, value, self.embed_dim, self.num_heads,
|
||||
self.in_proj_weight, self.in_proj_bias,
|
||||
self.bias_k, self.bias_v, self.add_zero_attn,
|
||||
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
||||
training=self.is_training(),
|
||||
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
use_separate_proj_weight=True,
|
||||
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
|
||||
v_proj_weight=self.v_proj_weight,
|
||||
average_attn_weights=average_attn_weights,
|
||||
is_causal=is_causal)
|
||||
else:
|
||||
assert key is not None and value is not None
|
||||
q = self.q_proj(query)
|
||||
k = self.k_proj(key)
|
||||
v = self.v_proj(value)
|
||||
q = q*self.scaling
|
||||
|
||||
assert self.bias_k is None, "TODO: self.bias_k is not None:"
|
||||
|
||||
q = q.view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(1, 0, 2)
|
||||
if k is not None:
|
||||
k = k.view(-1, bsz * self.num_heads, self.head_dim).transpose(1, 0, 2)
|
||||
if v is not None:
|
||||
v = v.view(-1, bsz * self.num_heads, self.head_dim).transpose(1, 0, 2)
|
||||
|
||||
assert saved_state is None, "TODO: saved_state is not None"
|
||||
assert k is not None
|
||||
src_len = k.shape[1]
|
||||
|
||||
assert key_padding_mask is None, "TODO: key_padding_mask is not None"
|
||||
assert not self.add_zero_attn, "TODO: self.add_zero_attn=True"
|
||||
|
||||
attn_weights = nn.bmm(q, k.transpose(0, 2, 1))
|
||||
|
||||
assert list(attn_weights.shape) == [bsz * self.num_heads, tgt_len, src_len]
|
||||
|
||||
assert attn_mask is None, "TODO: attn_mask is not None"
|
||||
assert key_padding_mask is None, "TODO: key_padding_mask is not None"
|
||||
|
||||
if before_softmax:
|
||||
return attn_weights, v
|
||||
|
||||
attn_weights_float = nn.softmax(attn_weights, dim=-1)
|
||||
attn_weights = attn_weights_float.type_as(attn_weights)
|
||||
|
||||
assert v is not None
|
||||
attn = nn.bmm(attn_weights, v)
|
||||
assert list(attn.shape) == [bsz * self.num_heads, tgt_len, self.head_dim]
|
||||
if self.onnx_trace and attn.shape[1] == 1:
|
||||
# when ONNX tracing a single decoder step (sequence length == 1)
|
||||
# the transpose is a no-op copy before view, thus unnecessary
|
||||
attn = attn.view(tgt_len, bsz, embed_dim)
|
||||
attn_output, attn_output_weights = multi_head_attention_forward(
|
||||
query, key, value, self.embed_dim, self.num_heads,
|
||||
self.in_proj_weight, self.in_proj_bias,
|
||||
self.bias_k, self.bias_v, self.add_zero_attn,
|
||||
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
||||
training=self.is_training(),
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
average_attn_weights=average_attn_weights,
|
||||
is_causal=is_causal)
|
||||
if self.batch_first and is_batched:
|
||||
return attn_output.transpose(1, 0), attn_output_weights
|
||||
else:
|
||||
attn = attn.transpose(1, 0, 2).view(tgt_len, bsz, embed_dim)
|
||||
attn = self.out_proj(attn)
|
||||
attn_weights = None
|
||||
if need_weights:
|
||||
attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0, 2, 3)
|
||||
if not need_head_weights:
|
||||
# average attention weights over heads
|
||||
attn_weights = attn_weights.mean(dims=[0])
|
||||
|
||||
return attn, attn_weights
|
||||
return attn_output, attn_output_weights
|
Loading…
Reference in New Issue