Merge remote-tracking branch 'upstream/master'

This commit is contained in:
lzhengning 2021-06-21 12:01:09 +08:00
commit 746794064a
33 changed files with 1712 additions and 205 deletions

View File

@ -9,7 +9,7 @@
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
__version__ = '1.2.3.22'
__version__ = '1.2.3.34'
from jittor_utils import lock
with lock.lock_scope():
ori_int = int
@ -437,11 +437,11 @@ def pow(x, y):
Var.pow = Var.__pow__ = pow
def argmax(x, dim, keepdims:bool=False):
return x.arg_reduce("max", dim, keepdims)
return jt.arg_reduce(x, "max", dim, keepdims)
Var.argmax = argmax
def argmin(x, dim, keepdims:bool=False):
return x.arg_reduce("min", dim, keepdims)
return jt.arg_reduce(x, "min", dim, keepdims)
Var.argmin = argmin
def randn(*size, dtype="float32", requires_grad=True) -> Var:

View File

@ -23,29 +23,35 @@ def search_file(dirs, name, prefer_version=()):
def install_mkl(root_folder):
# origin url is
# url = "https://github.com/intel/mkl-dnn/releases/download/v1.0.2/mkldnn_lnx_1.0.2_cpu_gomp.tgz"
url = "https://cloud.tsinghua.edu.cn/f/da02bf62b55b4aa3b8ee/?dl=1"
filename = "mkldnn_lnx_1.0.2_cpu_gomp.tgz"
# newest version for oneDNN
# url = "https://github.com/oneapi-src/oneDNN/releases/download/v2.2/dnnl_lnx_2.2.0_cpu_gomp.tgz"
# filename = "dnnl_lnx_2.2.0_cpu_gomp.tgz"
import platform
if platform.system()=="Linux":
if platform.machine()=='x86_64':
filename = "dnnl_lnx_2.2.0_cpu_gomp.tgz"
md5 = "35bbbdf550a9d8ad54db798e372000f6"
elif platform.machine()=='aarch64':
filename = "dnnl_lnx_2.2.0_cpu_gomp_aarch64.tgz"
md5 = "72cf9b0b8fd6c3c786d35a9daaee22b8"
else:
raise RuntimeError(f"platform.machine()=={platform.machine()} not support yet,"
" Please contact us on https://github.com/jittor/jittor ")
else:
raise RuntimeError(f"platform.machine()=={platform.machine()} not support yet,"
" Please contact us on https://github.com/jittor/jittor ")
url = "https://cg.cs.tsinghua.edu.cn/jittor/assets/" + filename
fullname = os.path.join(root_folder, filename)
dirname = os.path.join(root_folder, filename.replace(".tgz",""))
if not os.path.isfile(os.path.join(dirname, "examples", "test")):
if not os.path.isfile(os.path.join(dirname, "lib", "libmkldnn.so")):
LOG.i("Downloading mkl...")
download_url_to_local(url, filename, root_folder, "47187284ede27ad3bd64b5f0e7d5e730")
# newest version for oneDNN
# download_url_to_local(url, filename, root_folder, "35bbbdf550a9d8ad54db798e372000f6")
download_url_to_local(url, filename, root_folder, md5)
import tarfile
with tarfile.open(fullname, "r") as tar:
tar.extractall(root_folder)
assert 0 == os.system(f"cd {dirname}/examples && "
f"{cc_path} -std=c++14 cpu_cnn_inference_f32.cpp -Ofast -lmkldnn -I ../include -L ../lib -o test && LD_LIBRARY_PATH=../lib/ ./test")
# newest version for oneDNN
# assert 0 == os.system(f"cd {dirname}/examples && "
# f"{cc_path} -std=c++14 cnn_inference_f32.cpp -Ofast -lmkldnn -I ../include -L ../lib -o test && LD_LIBRARY_PATH=../lib/ ./test")
f"{cc_path} -std=c++14 cnn_inference_f32.cpp -Ofast -lmkldnn -I ../include -L ../lib -o test && LD_LIBRARY_PATH=../lib/ ./test")
def setup_mkl():
global mkl_ops, use_mkl
@ -80,7 +86,7 @@ def setup_mkl():
install_mkl(mkl_path)
mkl_home = ""
for name in os.listdir(mkl_path):
if name.startswith("mkldnn_lnx") and os.path.isdir(os.path.join(mkl_path, name)):
if name.startswith("dnnl") and os.path.isdir(os.path.join(mkl_path, name)):
mkl_home = os.path.join(mkl_path, name)
break
assert mkl_home!=""
@ -197,8 +203,14 @@ def setup_cuda_lib(lib_name, link=True, extra_flags=""):
if lib_name == "cublas" and nvcc_version[0] >= 10:
# manual link libcublasLt.so
cublas_lt_lib_path = search_file([cuda_lib, extra_lib_path, "/usr/lib/x86_64-linux-gnu", "/usr/lib"], f"libcublasLt.so", nvcc_version)
ctypes.CDLL(cublas_lt_lib_path, dlopen_flags)
try:
cublas_lt_lib_path = search_file([cuda_lib, extra_lib_path, "/usr/lib/x86_64-linux-gnu", "/usr/lib"], f"libcublasLt.so", nvcc_version)
ctypes.CDLL(cublas_lt_lib_path, dlopen_flags)
except:
# some aarch64 os, such as uos with FT2000 cpu,
# it's cuda 10 doesn't have libcublasLt.so
pass
if lib_name == "cudnn":

View File

@ -12,6 +12,7 @@ import inspect
import datetime
import threading
import ctypes
import platform
from ctypes import cdll
from ctypes.util import find_library
@ -634,7 +635,7 @@ def compile_custom_ops(
if gen_name_ != "":
gen_name = gen_name_
if len(gen_name) > 100:
gen_name = gen_name[:80] + "___hash" + str(hash(gen_name))
gen_name = gen_name[:80] + "___hash" + str(abs(hash(gen_name)))
includes = sorted(list(set(includes)))
includes = "".join(map(lambda x: f" -I'{x}' ", includes))
@ -1038,6 +1039,8 @@ if os.path.isfile(version_file) and not os.path.isdir(os.path.join(jittor_path,
os_key = os_type.get(os_id, "ubuntu")
if "os_key" in os.environ:
os_key = os.environ['os_key']
if platform.machine()=='aarch64':
os_key += '-aarch64'
LOG.i("OS type:", os_id, " OS key:", os_key)
key += '-' + os_key + '.o'
# TODO: open the website
@ -1049,7 +1052,7 @@ if os.path.isfile(version_file) and not os.path.isdir(os.path.join(jittor_path,
compile(cc_path, cc_flags+opt_flags, files, 'jittor_core'+extension_suffix)
# TODO: move to compile_extern.py
compile_extern()
# compile_extern()
with jit_utils.import_scope(import_flags):
import jittor_core as core

View File

@ -1,5 +1,6 @@
from .dataset import Dataset, ImageFolder
from .dataset import Dataset, ImageFolder, dataset_root
from .mnist import MNIST
from .cifar import CIFAR10, CIFAR100
from .voc import VOC
from .sampler import *

View File

@ -0,0 +1,189 @@
import os
from jittor_utils.misc import download_and_extract_archive, check_integrity
from PIL import Image
import sys, pickle
import numpy as np
from jittor.dataset import Dataset, dataset_root
class CIFAR10(Dataset):
"""`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
Args:
root (string): Root directory of dataset where directory
``cifar-10-batches-py`` exists or will be saved to if download is set to True.
train (bool, optional): If True, creates dataset from training set, otherwise
creates from test set.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
Example::
from jittor.dataset.cifar import CIFAR10
a = CIFAR10()
a.set_attrs(batch_size=16)
for imgs, labels in a:
print(imgs.shape, labels.shape)
break
"""
base_folder = 'cifar-10-batches-py'
url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
filename = "cifar-10-python.tar.gz"
tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
train_list = [
['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
['data_batch_4', '634d18415352ddfa80567beed471001a'],
['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
]
test_list = [
['test_batch', '40351d587109b95175f43aff81a1287e'],
]
meta = {
'filename': 'batches.meta',
'key': 'label_names',
'md5': '5ff9c542aee3614f3951f8cda6e48888',
}
def __init__(self, root=dataset_root+"/cifar_data/", train=True, transform=None, target_transform=None,
download=True):
super(CIFAR10, self).__init__()
self.root = root
self.transform=transform
self.target_transform=target_transform
self.train = train # training set or test set
if download:
self.download()
if not self._check_integrity():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it')
if self.train:
downloaded_list = self.train_list
else:
downloaded_list = self.test_list
self.data = []
self.targets = []
# now load the picked numpy arrays
for file_name, checksum in downloaded_list:
file_path = os.path.join(self.root, self.base_folder, file_name)
with open(file_path, 'rb') as f:
if sys.version_info[0] == 2:
entry = pickle.load(f)
else:
entry = pickle.load(f, encoding='latin1')
self.data.append(entry['data'])
if 'labels' in entry:
self.targets.extend(entry['labels'])
else:
self.targets.extend(entry['fine_labels'])
self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
self._load_meta()
def _load_meta(self):
path = os.path.join(self.root, self.base_folder, self.meta['filename'])
if not check_integrity(path, self.meta['md5']):
raise RuntimeError('Dataset metadata file not found or corrupted.' +
' You can use download=True to download it')
with open(path, 'rb') as infile:
if sys.version_info[0] == 2:
data = pickle.load(infile)
else:
data = pickle.load(infile, encoding='latin1')
self.classes = data[self.meta['key']]
self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)}
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.targets[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.data)
def _check_integrity(self):
root = self.root
for fentry in (self.train_list + self.test_list):
filename, md5 = fentry[0], fentry[1]
fpath = os.path.join(root, self.base_folder, filename)
if not check_integrity(fpath, md5):
return False
return True
def download(self):
if self._check_integrity():
print('Files already downloaded and verified')
return
download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
def extra_repr(self):
return "Split: {}".format("Train" if self.train is True else "Test")
class CIFAR100(CIFAR10):
"""`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
This is a subclass of the `CIFAR10` Dataset.
Example::
from jittor.dataset.cifar import CIFAR100
a = CIFAR100()
a.set_attrs(batch_size=16)
for imgs, labels in a:
print(imgs.shape, labels.shape)
break
"""
base_folder = 'cifar-100-python'
url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
filename = "cifar-100-python.tar.gz"
tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
train_list = [
['train', '16019d7e3df5f24257cddd939b257f8d'],
]
test_list = [
['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
]
meta = {
'filename': 'meta',
'key': 'fine_label_names',
'md5': '7973b15100ade9c7d40fb424638fde48',
}

View File

@ -29,18 +29,7 @@ kernel(in0->num/in0->shape[in0->shape.size()-1], 0, in0_p, out0_p, in0->shape[in
class OneHotCategorical:
def __init__(self, probs=None, logits=None):
assert not (probs is None and logits is None)
if probs is None:
# cannot align to pytorch
probs = jt.sigmoid(logits)
elif logits is None:
logits = jt.log(probs)
with jt.no_grad():
self.probs = probs / probs.sum(-1, True)
self.cum_probs = simple_presum(self.probs)
self.cum_probs_l = self.cum_probs[..., :-1]
self.cum_probs_r = self.cum_probs[..., 1:]
self.logits = logits
Categorical.__init__(self, probs, logits)
def sample(self, sample_shape=[]):
shape = sample_shape + self.probs.shape[:-1] + (1,)
@ -48,17 +37,12 @@ class OneHotCategorical:
one_hot = jt.logical_and(self.cum_probs_l < rand, rand <= self.cum_probs_r).float()
return one_hot
def log_prob(self,x):
if len(x.shape) == 1:
x = x.unsqueeze(0)
logits = self.logits.broadcast(x.shape)
indices = jt.argmax(x, dim=-1)[0]
return logits.gather(1, indices.unsqueeze(-1)).reshape(-1)
def log_prob(self, x):
x = jt.argmax(x, dim=-1)[0]
return Categorical.log_prob(self, x)
def entropy(self):
min_real = -(math.pow(2,23)-1) / math.pow(2,22) * math.pow(2,127)
logits = jt.clamp(self.logits,min_v=min_real)
p_log_p = logits * self.probs
p_log_p = self.logits * self.probs
return -p_log_p.sum(-1)
@ -68,29 +52,32 @@ class Categorical:
if probs is None:
# cannot align to pytorch
probs = jt.sigmoid(logits)
elif logits is None:
logits = jt.log(probs)
probs = probs / probs.sum(-1, True)
if logits is None:
logits = jt.safe_log(probs)
with jt.no_grad():
self.probs = probs / probs.sum(-1, True)
self.probs = probs
self.logits = logits
self.cum_probs = simple_presum(probs)
self.cum_probs = simple_presum(self.probs)
self.cum_probs_l = self.cum_probs[..., :-1]
self.cum_probs_r = self.cum_probs[..., 1:]
def sample(self, sample_shape=[]):
def sample(self, sample_shape=()):
shape = sample_shape + self.probs.shape[:-1] + (1,)
rand = jt.rand(shape)
one_hot = jt.logical_and(self.cum_probs_l < rand, rand <= self.cum_probs_r)
index = one_hot.index(one_hot.ndim-1)
index = one_hot.index(one_hot.ndim - 1)
return (one_hot * index).sum(-1)
def log_prob(self, x):
return jt.log(self.probs)[0,x]
a = self.probs.ndim
b = x.ndim
indexes = tuple( f'i{i}' for i in range(b-a+1, b) )
indexes = indexes + (x,)
return jt.safe_log(self.probs).getitem(indexes)
def entropy(self):
min_real = -(math.pow(2,23)-1) / math.pow(2,22) * math.pow(2,127)
logits = jt.clamp(self.logits,min_v=min_real)
p_log_p = logits * self.probs
p_log_p = self.logits * self.probs
return -p_log_p.sum(-1)
@ -104,11 +91,11 @@ class Normal:
def log_prob(self, x):
var = self.sigma**2
log_scale = jt.log(self.sigma)
log_scale = jt.safe_log(self.sigma)
return -((x-self.mu)**2) / (2*var) - log_scale-np.log(np.sqrt(2*np.pi))
def entropy(self):
return 0.5+0.5*np.log(2*np.pi)+jt.log(self.sigma)
return 0.5+0.5*np.log(2*np.pi)+jt.safe_log(self.sigma)
class Uniform:
@ -123,10 +110,10 @@ class Uniform:
def log_prob(self,x):
if x < self.low or x >= self.high:
return math.inf
return -jt.log(self.high - self.low)
return -jt.safe_log(self.high - self.low)
def entropy(self):
return jt.log(self.high - self.low)
return jt.safe_log(self.high - self.low)
class Geometric:
@ -138,15 +125,14 @@ class Geometric:
self.logits = logits
elif logits is None:
self.prob = p
self.logits = -jt.log(1. / p - 1)
self.logits = -jt.safe_log(1. / p - 1)
def sample(self, sample_shape):
tiny = jt.info(self.probs.dtype).tiny
u = jt.clamp(jt.rand(sample_shape),min_v=tiny)
return (jt.log(u) / (jt.log(-self.probs+1))).floor()
u = jt.rand(sample_shape)
return (jt.safe_log(u) / (jt.safe_log(-self.probs+1))).floor()
def log_prob(self, x):
return x*jt.log(-self.prob+1)+jt.log(self.prob)
return x*jt.safe_log(-self.prob+1)+jt.safe_log(self.prob)
def entropy(self):
return binary_cross_entropy_with_logits(jt.array(self.logits),jt.array(self.prob)) / self.prob
@ -157,16 +143,14 @@ def kl_divergence(cur_dist, old_dist):
if isinstance(cur_dist, Normal):
vr = (cur_dist.sigma / old_dist.sigma)**2
t1 = ((cur_dist.mu - old_dist.mu) / old_dist.sigma)**2
return 0.5*(vr+t1-1-jt.log(vr))
return 0.5*(vr+t1-1-jt.safe_log(vr))
if isinstance(cur_dist, Categorical) or isinstance(cur_dist,OneHotCategorical):
t = cur_dist.probs * (cur_dist.logits-old_dist.logits)
t[jt.array((old_dist.probs == 0))] = math.inf
t[jt.array((cur_dist.probs == 0))] = 0
return t.sum(-1)
if isinstance(cur_dist, Uniform):
res = jt.log((old_dist.high - old_dist.low) / (cur_dist.high - cur_dist.low))
res = jt.safe_log((old_dist.high - old_dist.low) / (cur_dist.high - cur_dist.low))
if old_dist.low > cur_dist.low or old_dist.high < cur_dist.high:
res = math.inf
return res
if isinstance(cur_dist, Geometric):
return -cur_dist.entropy() - jt.log(-old_dist.prob+1) / cur_dist.prob - old_dist.logits
return -cur_dist.entropy() - jt.safe_log(-old_dist.prob+1) / cur_dist.prob - old_dist.logits

View File

@ -0,0 +1,288 @@
// ***************************************************************
// Copyright (c) 2021 Jittor. All Rights Reserved.
// Maintainers:
// Dun Liang <randonlang@gmail.com>
// Guowei Yang <471184555@qq.com>
//
// This file is subject to the terms and conditions defined in
// file 'LICENSE.txt', which is part of this source code package.
// ***************************************************************
#include "mem/allocator.h"
#include "var.h"
#include "cudnn_conv3d_backward_w_op.h"
#include "cudnn_warper.h"
#include "executor.h"
#include "ops/op_register.h"
using namespace std;
namespace jittor {
#pragma GCC diagnostic ignored "-Wunused-variable"
#ifndef JIT
CudnnConv3dBackwardWOp::CudnnConv3dBackwardWOp(Var* x, Var* dy, int kd, int kh, int kw, int strided, int strideh, int stridew, int paddingd, int paddingh, int paddingw, int dilationd, int dilationh, int dilationw, int groups, string xformat)
: x(x), dy(dy), kd(kd), kh(kh), kw(kw), strided(strided), strideh(strideh), stridew(stridew), paddingd(paddingd), paddingh(paddingh), paddingw(paddingw), dilationd(dilationd), dilationh(dilationh), dilationw(dilationw), groups(groups),
xformat(move(xformat)) {
flags.set(NodeFlags::_cuda, 1);
flags.set(NodeFlags::_cpu, 0);
dw = create_output(nullptr, dtype_infer(dy->ns, x->ns));
}
void CudnnConv3dBackwardWOp::infer_shape() {
ASSERTop(x->shape.size(),==,5);
ASSERTop(dy->shape.size(),==,5);
int xn, xc, xd, xh, xw, wd, wh, ww, wci, wco, yn, yc, yd, yh, yw;
if (xformat == "ncdhw") {
x->shape.unpack(xn, xc, xd, xh, xw);
dy->shape.unpack(yn, yc, yd, yh, yw);
} else {
x->shape.unpack(xn, xd, xh, xw, xc);
dy->shape.unpack(yn, yd, yh, yw, yc);
}
wco = yc, wci = xc / groups;
wh = kh;
ww = kw;
wd = kd;
dw->set_shape(NanoVector(wco, wci, wd, wh, ww));
}
void CudnnConv3dBackwardWOp::jit_prepare(JK& jk) {
jk << _CS("[Tx:") << x->dtype();
jk << _CS("][Ty:") << dy->dtype();
jk << _CS("][Tw:") << dw->dtype();
jk << ']';
}
static auto make_conv3d = get_op_info("cudnn_conv3d")
.get_constructor<VarPtr, Var*, Var*, int, int, int, int, int, int, int, int, int, int, string>();
static auto make_backwardx = get_op_info("cudnn_conv3d_backward_x")
.get_constructor<VarPtr, Var*, Var*, int, int, int, int, int, int, int, int, int, int, int, int, int, string>();
VarPtr CudnnConv3dBackwardWOp::grad(Var* out, Var* dout, Var* v, int v_index) {
int xn, xc, xd, xh, xw, wd, wh, ww, wci, wco, yn, yc, yd, yh, yw;
if (xformat == "ncdhw") {
x->shape.unpack(xn, xc, xd, xh, xw);
dy->shape.unpack(yn, yc, yd, yh, yw);
} else {
x->shape.unpack(xn, xd, xh, xw, xc);
dy->shape.unpack(yn, yd, yh, yw, yc);
}
if (v_index == 0) {
return make_backwardx(dout, dy, xd, xh, xw, strided, strideh, stridew, paddingd, paddingh, paddingw, dilationd, dilationh, dilationw, groups, xformat);
} else {
return make_conv3d(x, dout, strided, strideh, stridew, paddingd, paddingh, paddingw, dilationd, dilationh, dilationw, groups, xformat);
}
}
// unordered_map<string, cudnnConvolutionBwdFilterAlgo_t> bwdw_algo_cache;
#else // JIT
#ifdef JIT_cuda
#pragma clang diagnostic ignored "-Wtautological-compare"
extern unordered_map<string, cudnnConvolutionBwdFilterAlgo_t> bwdw_algo_cache;
template <typename T_ELEM> __inline__ cudnnDataType_t getDataType();
template <> __inline__ cudnnDataType_t getDataType<half1>() { return CUDNN_DATA_HALF; }
template <> __inline__ cudnnDataType_t getDataType<float>() { return CUDNN_DATA_FLOAT; }
void CudnnConv3dBackwardWOp::jit_run() {
auto w = dw;
auto y = dy;
cudnnHandle_t& handle_ = cudnn_handle;
cudnnTensorDescriptor_t cudnnIdesc;
cudnnFilterDescriptor_t cudnnFdesc;
cudnnTensorDescriptor_t cudnnOdesc;
cudnnConvolutionDescriptor_t cudnnConvDesc;
checkCudaErrors(cudnnCreateTensorDescriptor( &cudnnIdesc ));
checkCudaErrors(cudnnCreateFilterDescriptor( &cudnnFdesc ));
checkCudaErrors(cudnnCreateTensorDescriptor( &cudnnOdesc ));
checkCudaErrors(cudnnCreateConvolutionDescriptor( &cudnnConvDesc ));
checkCudaErrors(cudnnSetConvolutionGroupCount( cudnnConvDesc, groups ));
int xn, xc, xd, xh, xw, wd, wh, ww, wci, wco, yn, yc, yd, yh, yw;
int sx[] = {0,0,0,0,1};
for (int i=3; i>=0; i--) sx[i] = sx[i+1] * x->shape[i+1];
int strideX[5];
if (xformat == "ncdhw") {
x->shape.unpack(xn, xc, xd, xh, xw);
int tmp[5] = {sx[0],sx[1],sx[2],sx[3],sx[4]};
memcpy(strideX, tmp, sizeof(tmp));
} else {
x->shape.unpack(xn, xd, xh, xw, xc);
int tmp[5] = {sx[0],sx[2],sx[3],sx[4],sx[1]};
memcpy(strideX, tmp, sizeof(tmp));
}
int dimX[] = {xn, xc, xd, xh, xw};
// dimX: ncdhw
checkCudaErrors(cudnnSetTensorNdDescriptor(
cudnnIdesc, getDataType<Tx>(),
5, dimX, strideX
));
auto ws = w->shape;
int dimW[] = {(int)ws[0],(int)ws[1],(int)ws[2],(int)ws[3],(int)ws[4]};
// cudnn only support this two format
// https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetFilterNdDescriptor
#define filterFormat_oihw CUDNN_TENSOR_NCHW
#define filterFormat_ohwi CUDNN_TENSOR_NHWC
// dimW: KCRS(oihw)
checkCudaErrors(cudnnSetFilterNdDescriptor(
cudnnFdesc, getDataType<Tw>(),
// filterFormat_@WFORMAT, 5, dimW
filterFormat_oihw, 5, dimW
));
int padA[] = {paddingd, paddingh, paddingw};
int convstrideA[] = {strided, strideh, stridew};
int dilationA[] = {dilationd, dilationh, dilationw};
// difference between
// CUDNN_CONVOLUTION and CUDNN_CROSS_CORRELATION
// is the kernel rc order
// currently, No perf difference is observed between
// this two mode
checkCudaErrors(cudnnSetConvolutionNdDescriptor(
cudnnConvDesc, 3,
padA, convstrideA, dilationA,
CUDNN_CROSS_CORRELATION, getDataType<Ty>()
));
// using tensor core
// checkCudaErrors( cudnnSetConvolutionMathType(cudnnConvDesc, CUDNN_TENSOR_OP_MATH) );
int sy[] = {0,0,0,0,1};
for (int i=3; i>=0; i--) sy[i] = sy[i+1] * y->shape[i+1];
int strideY[5];
if (xformat == "ncdhw") {
y->shape.unpack(yn, yc, yd, yh, yw);
int tmp[5] = {sy[0],sy[1],sy[2],sy[3],sy[4]};
memcpy(strideY, tmp, sizeof(tmp));
} else {
y->shape.unpack(yn, yd, yh, yw, yc);
int tmp[5] = {sy[0],sy[2],sy[3],sy[4],sy[1]};
memcpy(strideY, tmp, sizeof(tmp));
}
int dimY[] = {yn, yc, yd, yh, yw};
checkCudaErrors(cudnnSetTensorNdDescriptor(
cudnnOdesc, getDataType<Ty>(),
5, dimY, strideY
));
cudnnConvolutionBwdFilterAlgo_t algos[] = {
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0,
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1,
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT,
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3,
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED,
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING,
};
int num_algos = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT;
int perf_count;
cudnnConvolutionBwdFilterAlgoPerf_t perf_results[num_algos];
cudnnConvolutionBwdFilterAlgo_t algo;
bool benchmark=true;
jk.clear();
jk << dimX[0] << "," << dimX[1] << "," << dimX[2] << "," << dimX[3] << "," << dimX[4] << ",";
jk << dimW[0] << "," << dimW[1] << "," << dimW[2] << "," << dimW[3] << "," << dimW[4] << ",";
jk << paddingd << paddingh << paddingw << "," << strided << strideh <<stridew << "," << dilationd << dilationh << dilationw << "," << groups << ".";
auto iter = bwdw_algo_cache.find(jk.to_string());
if (iter!=bwdw_algo_cache.end()) algo = iter->second;
else {
if (bwdw_algo_cache.size()>=max_cache_size) benchmark = false;
if (benchmark) {
size_t max_ws_size = 0;
for (int i = 0; i < num_algos; i++) {
size_t sz;
cudnnStatus_t ret = cudnnGetConvolutionBackwardFilterWorkspaceSize(handle_, cudnnIdesc, cudnnOdesc, cudnnConvDesc, cudnnFdesc, algos[i], &sz);
// continue if use too much workspace
if (sz > mem_info.total_cuda_ram * max_workspace_ratio) continue;
if (CUDNN_STATUS_SUCCESS == ret && sz > max_ws_size) max_ws_size = sz;
}
size_t allocation;
void* ws = exe.temp_allocator->alloc(max_ws_size, allocation);
checkCudaErrors(cudnnFindConvolutionBackwardFilterAlgorithmEx(
handle_,
cudnnIdesc, x->ptr<Tx>(),
cudnnOdesc, y->ptr<Ty>(),
cudnnConvDesc,
cudnnFdesc, w->ptr<Tw>(),
num_algos,
&perf_count,
perf_results,
ws,
max_ws_size));
exe.temp_allocator->free(ws, max_ws_size, allocation);
} else {
checkCudaErrors(cudnnGetConvolutionBackwardFilterAlgorithm_v7(
handle_,
cudnnIdesc,
cudnnOdesc,
cudnnConvDesc,
cudnnFdesc,
num_algos,
&perf_count,
perf_results));
}
int best_algo_idx=-1;
for (int i = 0; i < perf_count; i++)
if (perf_results[i].status == CUDNN_STATUS_SUCCESS){
best_algo_idx=i;
break;
}
ASSERT(best_algo_idx!=-1);
algo=perf_results[best_algo_idx].algo;
if (benchmark) {
bwdw_algo_cache[jk.to_string()] = algo;
if (bwdw_algo_cache.size()==max_cache_size)
LOGw << "backward w algorithm cache is full";
}
}
// TODO: warp work space
void *workSpace = 0;
size_t workSpaceSize;
checkCudaErrors (cudnnGetConvolutionBackwardFilterWorkspaceSize(
handle_, cudnnIdesc, cudnnOdesc, cudnnConvDesc,
cudnnFdesc, algo, &workSpaceSize));
size_t allocation;
if (workSpaceSize > 0) {
workSpace = exe.temp_allocator->alloc(workSpaceSize, allocation);
}
float alpha=1, beta=0;
checkCudaErrors(cudnnConvolutionBackwardFilter(
handle_,
(void*)(&alpha),
cudnnIdesc, x->ptr<Tx>(),
cudnnOdesc, y->ptr<Ty>(),
cudnnConvDesc,
algo,
workSpace, workSpaceSize,
(void*)(&beta),
cudnnFdesc, w->ptr<Tw>())
);
if (workSpace)
exe.temp_allocator->free(workSpace, workSpaceSize, allocation);
checkCudaErrors(cudnnDestroyTensorDescriptor( cudnnIdesc ));
checkCudaErrors(cudnnDestroyFilterDescriptor( cudnnFdesc ));
checkCudaErrors(cudnnDestroyTensorDescriptor( cudnnOdesc ));
checkCudaErrors(cudnnDestroyConvolutionDescriptor( cudnnConvDesc ));
}
#endif
#endif // JIT
} // jittor

View File

@ -0,0 +1,28 @@
// ***************************************************************
// Copyright (c) 2021 Jittor. All Rights Reserved.
// Maintainers:
// Dun Liang <randonlang@gmail.com>
// Guowei Yang <471184555@qq.com>
//
// This file is subject to the terms and conditions defined in
// file 'LICENSE.txt', which is part of this source code package.
// ***************************************************************
#pragma once
#include "op.h"
namespace jittor {
struct CudnnConv3dBackwardWOp : Op {
Var* x, * dy, * dw;
int kd, kh, kw, strided, strideh, stridew, paddingd, paddingh, paddingw, dilationd, dilationh, dilationw, groups;
string xformat;
CudnnConv3dBackwardWOp(Var* x, Var* y, int kd, int kh, int kw, int strided, int strideh, int stridew, int paddingd, int paddingh, int paddingw, int dilationd, int dilationh, int dilationw, int groups=1, string xformat="ncdhw");
const char* name() const override { return "cudnn_conv3d_backward_w"; }
VarPtr grad(Var* out, Var* dout, Var* v, int v_index) override;
void infer_shape() override;
DECLARE_jit_run;
};
} // jittor

View File

@ -0,0 +1,279 @@
// ***************************************************************
// Copyright (c) 2021 Jittor. All Rights Reserved.
// Maintainers:
// Dun Liang <randonlang@gmail.com>
// Guowei Yang <471184555@qq.com>
//
// This file is subject to the terms and conditions defined in
// file 'LICENSE.txt', which is part of this source code package.
// ***************************************************************
#include "mem/allocator.h"
#include "var.h"
#include "cudnn_conv3d_backward_x_op.h"
#include "cudnn_warper.h"
#include "executor.h"
#include "ops/op_register.h"
using namespace std;
namespace jittor {
#pragma GCC diagnostic ignored "-Wunused-variable"
#ifndef JIT
CudnnConv3dBackwardXOp::CudnnConv3dBackwardXOp(Var* w, Var* dy, int depth, int height, int width, int strided, int strideh, int stridew, int paddingd, int paddingh, int paddingw, int dilationd, int dilationh, int dilationw, int groups, string xformat)
: w(w), dy(dy), xd(depth), xh(height), xw(width), strided(strided), strideh(strideh), stridew(stridew), paddingd(paddingd), paddingh(paddingh), paddingw(paddingw), dilationd(dilationd), dilationh(dilationh), dilationw(dilationw), groups(groups),
xformat(move(xformat)) {
flags.set(NodeFlags::_cuda, 1);
flags.set(NodeFlags::_cpu, 0);
dx = create_output(nullptr, dtype_infer(dy->ns, w->ns));
}
void CudnnConv3dBackwardXOp::infer_shape() {
ASSERTop(w->shape.size(),==,5);
ASSERTop(dy->shape.size(),==,5);
int xn, xc, wd, wh, ww, wci, wco, yn, yc, yd, yh, yw;
w->shape.unpack(wco, wci, wd, wh, ww);
if (xformat == "ncdhw")
dy->shape.unpack(yn, yc, yd, yh, yw);
else
dy->shape.unpack(yn, yd, yh, yw, yc);
xn = yn, xc = wci * groups;
if (xformat == "ncdhw")
dx->set_shape(NanoVector(xn, xc, xd, xh, xw));
else
dx->set_shape(NanoVector(xn, xd, xh, xw, xc));
}
void CudnnConv3dBackwardXOp::jit_prepare(JK& jk) {
jk << _CS("[Tx:") << dx->dtype();
jk << _CS("][Ty:") << dy->dtype();
jk << _CS("][Tw:") << w->dtype();
jk << ']';
}
static auto make_conv3d = get_op_info("cudnn_conv3d")
.get_constructor<VarPtr, Var*, Var*, int, int, int, int, int, int, int, int, int, int, string>();
static auto make_backwardw = get_op_info("cudnn_conv3d_backward_w")
.get_constructor<VarPtr, Var*, Var*, int, int, int, int, int, int, int, int, int, int, int, int, int, string>();
VarPtr CudnnConv3dBackwardXOp::grad(Var* out, Var* dout, Var* v, int v_index) {
int xn, xc, wd, wh, ww, wci, wco, yn, yc, yd, yh, yw;
w->shape.unpack(wco, wci, wd, wh, ww);
if (v_index == 0) {
return make_backwardw(dout, dy, wd, wh, ww, strided, strideh, stridew, paddingd, paddingh, paddingw, dilationd, dilationh, dilationw, groups, xformat);
} else {
return make_conv3d(dout, w, strided, strideh, stridew, paddingd, paddingh, paddingw, dilationd, dilationh, dilationw, groups, xformat);
}
}
// unordered_map<string, cudnnConvolutionBwdDataAlgo_t> bwdx_algo_cache;
#else // JIT
#ifdef JIT_cuda
#pragma clang diagnostic ignored "-Wtautological-compare"
extern unordered_map<string, cudnnConvolutionBwdDataAlgo_t> bwdx_algo_cache;
template <typename T_ELEM> __inline__ cudnnDataType_t getDataType();
template <> __inline__ cudnnDataType_t getDataType<half1>() { return CUDNN_DATA_HALF; }
template <> __inline__ cudnnDataType_t getDataType<float>() { return CUDNN_DATA_FLOAT; }
void CudnnConv3dBackwardXOp::jit_run() {
auto x = dx;
auto y = dy;
cudnnHandle_t& handle_ = cudnn_handle;
cudnnTensorDescriptor_t cudnnIdesc;
cudnnFilterDescriptor_t cudnnFdesc;
cudnnTensorDescriptor_t cudnnOdesc;
cudnnConvolutionDescriptor_t cudnnConvDesc;
checkCudaErrors(cudnnCreateTensorDescriptor( &cudnnIdesc ));
checkCudaErrors(cudnnCreateFilterDescriptor( &cudnnFdesc ));
checkCudaErrors(cudnnCreateTensorDescriptor( &cudnnOdesc ));
checkCudaErrors(cudnnCreateConvolutionDescriptor( &cudnnConvDesc ));
checkCudaErrors(cudnnSetConvolutionGroupCount( cudnnConvDesc, groups ));
int xn, xc, xd, xh, xw, wd, wh, ww, wci, wco, yn, yc, yd, yh, yw;
int sx[] = {0,0,0,0,1};
for (int i=3; i>=0; i--) sx[i] = sx[i+1] * x->shape[i+1];
int strideX[5];
if (xformat == "ncdhw") {
x->shape.unpack(xn, xc, xd, xh, xw);
int tmp[5] = {sx[0],sx[1],sx[2],sx[3],sx[4]};
memcpy(strideX, tmp, sizeof(tmp));
} else {
x->shape.unpack(xn, xd, xh, xw, xc);
int tmp[5] = {sx[0],sx[2],sx[3],sx[4],sx[1]};
memcpy(strideX, tmp, sizeof(tmp));
}
int dimX[] = {xn, xc, xd, xh, xw};
// dimX: ncdhw
checkCudaErrors(cudnnSetTensorNdDescriptor(
cudnnIdesc, getDataType<Tx>(),
5, dimX, strideX
));
auto ws = w->shape;
int dimW[] = {(int)ws[0],(int)ws[1],(int)ws[2],(int)ws[3],(int)ws[4]};
// cudnn only support this two format
// https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetFilterNdDescriptor
#define filterFormat_oihw CUDNN_TENSOR_NCHW
#define filterFormat_ohwi CUDNN_TENSOR_NHWC
// dimW: KCRS(oihw)
checkCudaErrors(cudnnSetFilterNdDescriptor(
cudnnFdesc, getDataType<Tw>(),
// filterFormat_@WFORMAT, 5, dimW
filterFormat_oihw, 5, dimW
));
int padA[] = {paddingd, paddingh, paddingw};
int convstrideA[] = {strided, strideh, stridew};
int dilationA[] = {dilationd, dilationh, dilationw};
// difference between
// CUDNN_CONVOLUTION and CUDNN_CROSS_CORRELATION
// is the kernel rc order
// currently, No perf difference is observed between
// this two mode
checkCudaErrors(cudnnSetConvolutionNdDescriptor(
cudnnConvDesc, 3,
padA, convstrideA, dilationA,
CUDNN_CROSS_CORRELATION, getDataType<Ty>()
));
// using tensor core
// checkCudaErrors( cudnnSetConvolutionMathType(cudnnConvDesc, CUDNN_TENSOR_OP_MATH) );
int sy[] = {0,0,0,0,1};
for (int i=3; i>=0; i--) sy[i] = sy[i+1] * y->shape[i+1];
int strideY[5];
if (xformat == "ncdhw") {
y->shape.unpack(yn, yc, yd, yh, yw);
int tmp[5] = {sy[0],sy[1],sy[2],sy[3],sy[4]};
memcpy(strideY, tmp, sizeof(tmp));
} else {
y->shape.unpack(yn, yd, yh, yw, yc);
int tmp[5] = {sy[0],sy[2],sy[3],sy[4],sy[1]};
memcpy(strideY, tmp, sizeof(tmp));
}
int dimY[] = {yn, yc, yd, yh, yw};
checkCudaErrors(cudnnSetTensorNdDescriptor(
cudnnOdesc, getDataType<Ty>(),
5, dimY, strideY
));
cudnnConvolutionBwdDataAlgo_t algos[] = {
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0,
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1,
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT,
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING,
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD,
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED
};
int num_algos = CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT;
int perf_count;
cudnnConvolutionBwdDataAlgoPerf_t perf_results[num_algos];
cudnnConvolutionBwdDataAlgo_t algo;
bool benchmark=true;
jk.clear();
jk << dimX[0] << "," << dimX[1] << "," << dimX[2] << "," << dimX[3] << "," << dimX[4] << ",";
jk << dimW[0] << "," << dimW[1] << "," << dimW[2] << "," << dimW[3] << "," << dimW[4] << ",";
jk << paddingd << paddingh << paddingw << "," << strided << strideh <<stridew << "," << dilationd << dilationh << dilationw << "," << groups << ".";
auto iter = bwdx_algo_cache.find(jk.to_string());
if (iter!=bwdx_algo_cache.end()) algo = iter->second;
else {
if (bwdx_algo_cache.size()>=max_cache_size) benchmark = false;
if (benchmark) {
size_t max_ws_size = 0;
for (int i = 0; i < num_algos; i++) {
size_t sz;
cudnnStatus_t ret = cudnnGetConvolutionBackwardDataWorkspaceSize(handle_, cudnnFdesc, cudnnOdesc, cudnnConvDesc, cudnnIdesc, algos[i], &sz);
// continue if use too much workspace
if (sz > mem_info.total_cuda_ram * max_workspace_ratio) continue;
if (CUDNN_STATUS_SUCCESS == ret && sz > max_ws_size) max_ws_size = sz;
}
size_t allocation;
void* ws = exe.temp_allocator->alloc(max_ws_size, allocation);
checkCudaErrors(cudnnFindConvolutionBackwardDataAlgorithmEx(
handle_,
cudnnFdesc, w->ptr<Tw>(),
cudnnOdesc, y->ptr<Ty>(),
cudnnConvDesc,
cudnnIdesc, x->ptr<Tx>(),
num_algos,
&perf_count,
perf_results,
ws,
max_ws_size));
exe.temp_allocator->free(ws, max_ws_size, allocation);
} else {
checkCudaErrors(cudnnGetConvolutionBackwardDataAlgorithm_v7(
handle_,
cudnnFdesc,
cudnnOdesc,
cudnnConvDesc,
cudnnIdesc,
num_algos,
&perf_count,
perf_results));
}
int best_algo_idx=-1;
for (int i = 0; i < perf_count; i++)
if (perf_results[i].status == CUDNN_STATUS_SUCCESS){
best_algo_idx=i;
break;
}
ASSERT(best_algo_idx!=-1);
algo=perf_results[best_algo_idx].algo;
if (benchmark) {
bwdx_algo_cache[jk.to_string()] = algo;
if (bwdx_algo_cache.size()==max_cache_size)
LOGw << "backward x algorithm cache is full";
}
}
// TODO: warp work space
void *workSpace = 0;
size_t workSpaceSize;
checkCudaErrors (cudnnGetConvolutionBackwardDataWorkspaceSize(
handle_, cudnnFdesc, cudnnOdesc, cudnnConvDesc,
cudnnIdesc, algo, &workSpaceSize));
size_t allocation;
if (workSpaceSize > 0) {
workSpace = exe.temp_allocator->alloc(workSpaceSize, allocation);
}
float alpha=1, beta=0;
checkCudaErrors(cudnnConvolutionBackwardData(
handle_,
(void*)(&alpha),
cudnnFdesc, w->ptr<Tw>(),
cudnnOdesc, y->ptr<Ty>(),
cudnnConvDesc,
algo,
workSpace, workSpaceSize,
(void*)(&beta),
cudnnIdesc, x->ptr<Tx>())
);
if (workSpace)
exe.temp_allocator->free(workSpace, workSpaceSize, allocation);
checkCudaErrors(cudnnDestroyTensorDescriptor( cudnnIdesc ));
checkCudaErrors(cudnnDestroyFilterDescriptor( cudnnFdesc ));
checkCudaErrors(cudnnDestroyTensorDescriptor( cudnnOdesc ));
checkCudaErrors(cudnnDestroyConvolutionDescriptor( cudnnConvDesc ));
}
#endif
#endif // JIT
} // jittor

View File

@ -0,0 +1,28 @@
// ***************************************************************
// Copyright (c) 2021 Jittor. All Rights Reserved.
// Maintainers:
// Dun Liang <randonlang@gmail.com>
// Guowei Yang <471184555@qq.com>
//
// This file is subject to the terms and conditions defined in
// file 'LICENSE.txt', which is part of this source code package.
// ***************************************************************
#pragma once
#include "op.h"
namespace jittor {
struct CudnnConv3dBackwardXOp : Op {
Var* w, * dy, * dx;
int xd, xh, xw, strided, strideh, stridew, paddingd, paddingh, paddingw, dilationd, dilationh, dilationw, groups;
string xformat;
CudnnConv3dBackwardXOp(Var* w, Var* y, int depth, int height, int width, int strided, int strideh, int stridew, int paddingd, int paddingh, int paddingw, int dilationd, int dilationh, int dilationw, int groups=1, string xformat="ncdhw");
const char* name() const override { return "cudnn_conv3d_backward_x"; }
VarPtr grad(Var* out, Var* dout, Var* v, int v_index) override;
void infer_shape() override;
DECLARE_jit_run;
};
} // jittor

View File

@ -0,0 +1,284 @@
// ***************************************************************
// Copyright (c) 2021 Jittor. All Rights Reserved.
// Maintainers: Dun Liang <randonlang@gmail.com>.
//
// This file is subject to the terms and conditions defined in
// file 'LICENSE.txt', which is part of this source code package.
// ***************************************************************
#include "var.h"
#include "cudnn_conv3d_op.h"
#include "cudnn_warper.h"
#include "executor.h"
#include "ops/op_register.h"
using namespace std;
namespace jittor {
#pragma GCC diagnostic ignored "-Wunused-variable"
#ifndef JIT
CudnnConv3dOp::CudnnConv3dOp(Var* x, Var* w, int strided, int strideh, int stridew, int paddingd, int paddingh, int paddingw, int dilationd, int dilationh, int dilationw, int groups, string xformat)
: x(x), w(w), strided(strided), strideh(strideh), stridew(stridew), paddingd(paddingd), paddingh(paddingh), paddingw(paddingw), dilationd(dilationd), dilationh(dilationh), dilationw(dilationw), groups(groups),
xformat(move(xformat)) {
flags.set(NodeFlags::_cuda, 1);
flags.set(NodeFlags::_cpu, 0);
y = create_output(nullptr, dtype_infer(x->ns, w->ns));
}
void CudnnConv3dOp::infer_shape() {
ASSERTop(x->shape.size(),==,5);
ASSERTop(w->shape.size(),==,5);
int xn, xc, xd, xh, xw, wd, wh, ww, wci, wco, yn, yc, yd, yh, yw;
if (xformat == "ncdhw")
x->shape.unpack(xn, xc, xd, xh, xw);
else
x->shape.unpack(xn, xd, xh, xw, xc);
w->shape.unpack(wco, wci, wd, wh, ww);
ASSERTop(wci * groups,==,xc);
yn = xn, yc = wco;
yd = (xd+paddingd*2-wd*dilationd+dilationd-1)/strided+1;
yh = (xh+paddingh*2-wh*dilationh+dilationh-1)/strideh+1;
yw = (xw+paddingw*2-ww*dilationw+dilationw-1)/stridew+1;
if (xformat == "ncdhw")
y->set_shape(NanoVector(yn, yc, yd, yh, yw));
else
y->set_shape(NanoVector(yn, yd, yh, yw, yc));
}
void CudnnConv3dOp::jit_prepare(JK& jk) {
jk << _CS("[Tx:") << x->dtype();
jk << _CS("][Ty:") << y->dtype();
jk << _CS("][Tw:") << w->dtype();
jk << ']';
}
static auto make_backwardx = get_op_info("cudnn_conv3d_backward_x")
.get_constructor<VarPtr, Var*, Var*, int, int, int, int, int, int, int, int, int, int, int, int, int, string>();
static auto make_backwardw = get_op_info("cudnn_conv3d_backward_w")
.get_constructor<VarPtr, Var*, Var*, int, int, int, int, int, int, int, int, int, int, int, int, int, string>();
VarPtr CudnnConv3dOp::grad(Var* out, Var* dout, Var* v, int v_index) {
int xn, xc, xd, xh, xw, wd, wh, ww, wci, wco, yn, yc, yd, yh, yw;
if (xformat == "ncdhw")
x->shape.unpack(xn, xc, xd, xh, xw);
else
x->shape.unpack(xn, xd, xh, xw, xc);
w->shape.unpack(wco, wci, wd, wh, ww);
if (v_index == 0) {
return make_backwardx(w, dout, xd, xh, xw, strided, strideh, stridew, paddingd, paddingh, paddingw, dilationd, dilationh, dilationw, groups, xformat);
} else {
return make_backwardw(x, dout, wd, wh, ww, strided, strideh, stridew, paddingd, paddingh, paddingw, dilationd, dilationh, dilationw, groups, xformat);
}
}
// unordered_map<string, cudnnConvolutionFwdAlgo_t> fwd_algo_cache;
#else // JIT
#ifdef JIT_cuda
#pragma clang diagnostic ignored "-Wtautological-compare"
extern unordered_map<string, cudnnConvolutionFwdAlgo_t> fwd_algo_cache;
template <typename T_ELEM> __inline__ cudnnDataType_t getDataType();
template <> __inline__ cudnnDataType_t getDataType<half1>() { return CUDNN_DATA_HALF; }
template <> __inline__ cudnnDataType_t getDataType<float>() { return CUDNN_DATA_FLOAT; }
void CudnnConv3dOp::jit_run() {
cudnnHandle_t& handle_ = cudnn_handle;
cudnnTensorDescriptor_t cudnnIdesc;
cudnnFilterDescriptor_t cudnnFdesc;
cudnnTensorDescriptor_t cudnnOdesc;
cudnnConvolutionDescriptor_t cudnnConvDesc;
checkCudaErrors(cudnnCreateTensorDescriptor( &cudnnIdesc ));
checkCudaErrors(cudnnCreateFilterDescriptor( &cudnnFdesc ));
checkCudaErrors(cudnnCreateTensorDescriptor( &cudnnOdesc ));
checkCudaErrors(cudnnCreateConvolutionDescriptor( &cudnnConvDesc ));
checkCudaErrors(cudnnSetConvolutionGroupCount( cudnnConvDesc, groups ));
int xn, xc, xd, xh, xw, wd, wh, ww, wci, wco, yn, yc, yd, yh, yw;
int sx[] = {0,0,0,0,1};
for (int i=3; i>=0; i--) sx[i] = sx[i+1] * x->shape[i+1];
int strideX[5];
if (xformat == "ncdhw") {
x->shape.unpack(xn, xc, xd, xh, xw);
int tmp[5] = {sx[0],sx[1],sx[2],sx[3],sx[4]};
memcpy(strideX, tmp, sizeof(tmp));
} else {
x->shape.unpack(xn, xd, xh, xw, xc);
int tmp[5] = {sx[0],sx[2],sx[3],sx[4],sx[1]};
memcpy(strideX, tmp, sizeof(tmp));
}
int dimX[] = {xn, xc, xd, xh, xw};
// dimX: ncdhw
checkCudaErrors(cudnnSetTensorNdDescriptor(
cudnnIdesc, getDataType<Tx>(),
5, dimX, strideX
));
auto ws = w->shape;
int dimW[] = {(int)ws[0],(int)ws[1],(int)ws[2],(int)ws[3],(int)ws[4]};
// cudnn only support this two format
// https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetFilterNdDescriptor
#define filterFormat_oihw CUDNN_TENSOR_NCHW
#define filterFormat_ohwi CUDNN_TENSOR_NHWC
// dimW: KCRS(oihw)
checkCudaErrors(cudnnSetFilterNdDescriptor(
cudnnFdesc, getDataType<Tw>(),
// filterFormat_@WFORMAT, 5, dimW
filterFormat_oihw, 5, dimW
));
int padA[] = {paddingd, paddingh, paddingw};
int convstrideA[] = {strided, strideh, stridew};
int dilationA[] = {dilationd, dilationh, dilationw};
// difference between
// CUDNN_CONVOLUTION and CUDNN_CROSS_CORRELATION
// is the kernel rc order
// currently, No perf difference is observed between
// this two mode
checkCudaErrors(cudnnSetConvolutionNdDescriptor(
cudnnConvDesc, 3,
padA, convstrideA, dilationA,
CUDNN_CROSS_CORRELATION, getDataType<Ty>()
));
// using tensor core
// checkCudaErrors( cudnnSetConvolutionMathType(cudnnConvDesc, CUDNN_TENSOR_OP_MATH) );
int sy[] = {0,0,0,0,1};
for (int i=3; i>=0; i--) sy[i] = sy[i+1] * y->shape[i+1];
int strideY[5];
if (xformat == "ncdhw") {
y->shape.unpack(yn, yc, yd, yh, yw);
int tmp[5] = {sy[0],sy[1],sy[2],sy[3],sy[4]};
memcpy(strideY, tmp, sizeof(tmp));
} else {
y->shape.unpack(yn, yd, yh, yw, yc);
int tmp[5] = {sy[0],sy[2],sy[3],sy[4],sy[1]};
memcpy(strideY, tmp, sizeof(tmp));
}
int dimY[] = {yn, yc, yd, yh, yw};
checkCudaErrors(cudnnSetTensorNdDescriptor(
cudnnOdesc, getDataType<Ty>(),
5, dimY, strideY
));
cudnnConvolutionFwdAlgo_t algos[] = {
CUDNN_CONVOLUTION_FWD_ALGO_GEMM,
CUDNN_CONVOLUTION_FWD_ALGO_FFT,
CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING,
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM,
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM,
CUDNN_CONVOLUTION_FWD_ALGO_DIRECT,
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD,
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED,
};
int num_algos = CUDNN_CONVOLUTION_FWD_ALGO_COUNT;
int perf_count;
cudnnConvolutionFwdAlgoPerf_t perf_results[num_algos];
cudnnConvolutionFwdAlgo_t algo;
bool benchmark=true;
jk.clear();
jk << dimX[0] << "," << dimX[1] << "," << dimX[2] << "," << dimX[3] << "," << dimX[4] << ",";
jk << dimW[0] << "," << dimW[1] << "," << dimW[2] << "," << dimW[3] << "," << dimW[4] << ",";
jk << paddingd << paddingh << paddingw << "," << strided << strideh <<stridew << "," << dilationd << dilationh << dilationw << "," << groups << ".";
auto iter = fwd_algo_cache.find(jk.to_string());
if (iter!=fwd_algo_cache.end()) algo = iter->second;
else {
if (fwd_algo_cache.size()>=max_cache_size) benchmark = false;
if (benchmark) {
size_t max_ws_size = 0;
for (int i = 0; i < num_algos; i++) {
size_t sz;
cudnnStatus_t ret = cudnnGetConvolutionForwardWorkspaceSize(
handle_, cudnnIdesc, cudnnFdesc, cudnnConvDesc,
cudnnOdesc, algos[i], &sz);
// continue if use too much workspace
if (sz > mem_info.total_cuda_ram * max_workspace_ratio) continue;
if (CUDNN_STATUS_SUCCESS == ret && sz > max_ws_size) max_ws_size = sz;
}
size_t allocation;
void* ws = exe.temp_allocator->alloc(max_ws_size, allocation);
checkCudaErrors(cudnnFindConvolutionForwardAlgorithmEx(
handle_,
cudnnIdesc, x->ptr<Tx>(),
cudnnFdesc, w->ptr<Tw>(),
cudnnConvDesc,
cudnnOdesc, y->ptr<Ty>(),
num_algos,
&perf_count,
perf_results,
ws,
max_ws_size));
exe.temp_allocator->free(ws, max_ws_size, allocation);
} else {
checkCudaErrors(cudnnGetConvolutionForwardAlgorithm_v7(
handle_,
cudnnIdesc,
cudnnFdesc,
cudnnConvDesc,
cudnnOdesc,
num_algos,
&perf_count,
perf_results));
}
int best_algo_idx=-1;
for (int i = 0; i < perf_count; i++)
if (perf_results[i].status == CUDNN_STATUS_SUCCESS){
best_algo_idx=i;
break;
}
ASSERT(best_algo_idx!=-1);
algo=perf_results[best_algo_idx].algo;
if (benchmark) {
fwd_algo_cache[jk.to_string()] = algo;
if (fwd_algo_cache.size()==max_cache_size)
LOGw << "forward_ algorithm cache is full";
}
}
// TODO: warp work space
void *workSpace = 0;
size_t workSpaceSize;
checkCudaErrors (cudnnGetConvolutionForwardWorkspaceSize(
handle_, cudnnIdesc, cudnnFdesc, cudnnConvDesc,
cudnnOdesc, algo, &workSpaceSize) );
size_t allocation;
if (workSpaceSize > 0) {
workSpace = exe.temp_allocator->alloc(workSpaceSize, allocation);
}
float alpha=1, beta=0;
checkCudaErrors(cudnnConvolutionForward(
handle_,
(void*)(&alpha),
cudnnIdesc, x->ptr<Tx>(),
cudnnFdesc, w->ptr<Tw>(),
cudnnConvDesc,
algo,
workSpace, workSpaceSize,
(void*)(&beta),
cudnnOdesc, y->ptr<Ty>())
);
if (workSpace)
exe.temp_allocator->free(workSpace, workSpaceSize, allocation);
checkCudaErrors(cudnnDestroyTensorDescriptor( cudnnIdesc ));
checkCudaErrors(cudnnDestroyFilterDescriptor( cudnnFdesc ));
checkCudaErrors(cudnnDestroyTensorDescriptor( cudnnOdesc ));
checkCudaErrors(cudnnDestroyConvolutionDescriptor( cudnnConvDesc ));
}
#endif
#endif // JIT
} // jittor

View File

@ -0,0 +1,24 @@
// ***************************************************************
// Copyright (c) 2021 Jittor. All Rights Reserved.
// Maintainers: Dun Liang <randonlang@gmail.com>.
// This file is subject to the terms and conditions defined in
// file 'LICENSE.txt', which is part of this source code package.
// ***************************************************************
#pragma once
#include "op.h"
namespace jittor {
struct CudnnConv3dOp : Op {
Var* x, * w, * y;
int strided, strideh, stridew, paddingd, paddingh, paddingw, dilationd, dilationh, dilationw, groups;
string xformat;
CudnnConv3dOp(Var* x, Var* w, int strided, int strideh, int stridew, int paddingd, int paddingh, int paddingw, int dilationd=1, int dilationh=1, int dilationw=1, int groups=1, string xformat="ncdhw");
const char* name() const override { return "cudnn_conv3d"; }
VarPtr grad(Var* out, Var* dout, Var* v, int v_index) override;
void infer_shape() override;
DECLARE_jit_run;
};
} // jittor

View File

@ -634,23 +634,6 @@ def kthvalue(input, k, dim=None, keepdim=False):
jt.Var.kthvalue = kthvalue
def gather(x,dim,index):
if dim<0:
dim+=index.ndim
x_shape = list(x.shape )
i_shape = list(index.shape)
assert i_shape[dim]>0
assert x.ndim == index.ndim
i_shape[dim]=x_shape[dim]
assert i_shape == x_shape
ins = []
for i in range(index.ndim):
ins.append(jt.index(index.shape,dim=i))
ins[dim]=index
return x.reindex(ins)
jt.Var.gather = gather
def _prod(x,dim=0):
x = jt.log(x)
x = x.sum(dim=dim)
@ -1255,3 +1238,7 @@ Examples::
return x.reindex(x.shape, ids)
jt.Var.roll = roll
def safe_log(x):
return jt.safe_clip(x, 1e-30, 1e30).log()
jt.Var.safe_log = safe_log

View File

@ -21,18 +21,19 @@ from collections import OrderedDict
from jittor.pool import *
from jittor.optim import *
from jittor.misc import _pair, _triple
from jittor_utils import LOG
def matmul_transpose(a, b):
'''
returns a * b^T
'''
assert len(a.shape) >= 2 and len(b.shape) == 2
assert a.shape[-1] == b.shape[-1], (a.shape, b.shape)
if len(a.shape)>2:
if len(a.shape) != 2:
aa = a.reshape((-1, a.shape[-1]))
cc = matmul_transpose(aa, b)
return cc.reshape(a.shape[:-1]+(-1,))
assert len(a.shape) == 2 and len(b.shape) == 2
shape = list(a.shape)[:-1] + list(b.shape)
a = a.broadcast(shape, [len(shape)-2])
@ -639,7 +640,6 @@ class Conv1d(Module):
class Conv3d(Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
LOG.w("Optimizations of Conv3d are working in progress, it maybe slow currently.")
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size, kernel_size, kernel_size)
@ -665,65 +665,7 @@ class Conv3d(Module):
self.bias = None
def execute(self, x):
if self.groups == 1:
N,C,H,W,D = x.shape
Kh, Kw, Kd = self.kernel_size
assert C==self.in_channels
oh = (H+self.padding[0]*2-Kh*self.dilation[0]+self.dilation[0]-1)//self.stride[0]+1
ow = (W+self.padding[1]*2-Kw*self.dilation[1]+self.dilation[1]-1)//self.stride[1]+1
od = (D+self.padding[2]*2-Kd*self.dilation[2]+self.dilation[2]-1)//self.stride[2]+1
xx = x.reindex([N,self.out_channels,C,oh,ow,od,Kh,Kw,Kd], [
'i0', # Nid
'i2', # Cid
f'i3*{self.stride[0]}-{self.padding[0]}+i6*{self.dilation[0]}', # Hid+Khid
f'i4*{self.stride[1]}-{self.padding[1]}+i7*{self.dilation[1]}', # Wid+KWid
f'i5*{self.stride[2]}-{self.padding[2]}+i8*{self.dilation[2]}', # Did+KDid
])
ww = self.weight.broadcast(xx.shape, [0,3,4,5])
yy = xx*ww
y = yy.sum([2,6,7,8]) # Kc, Kh, Kw, Kd
if self.bias is not None:
b = self.bias.broadcast(y.shape, [0,2,3,4])
y = y + b
return y
else:
N,C,H,W,D = x.shape
Kh, Kw, Kd = self.kernel_size
G = self.groups
CpG = C // G # channels per group
assert C==self.in_channels
oc = self.out_channels
oh = (H+self.padding[0]*2-Kh*self.dilation[0]+self.dilation[0]-1)//self.stride[0]+1
ow = (W+self.padding[1]*2-Kw*self.dilation[1]+self.dilation[1]-1)//self.stride[1]+1
od = (D+self.padding[2]*2-Kd*self.dilation[2]+self.dilation[2]-1)//self.stride[2]+1
xx = x.reindex([N,G,oc//G,CpG,oh,ow,od,Kh,Kw,Kd], [
'i0', # Nid
f'i1*{CpG}+i3', # Gid
f'i4*{self.stride[0]}-{self.padding[0]}+i7*{self.dilation[0]}', # Hid+Khid
f'i5*{self.stride[1]}-{self.padding[1]}+i8*{self.dilation[1]}', # Wid+KWid
f'i6*{self.stride[2]}-{self.padding[2]}+i9*{self.dilation[2]}', # Did+KDid
])
# w: [oc, CpG, Kh, Kw, Kd]
ww = self.weight.reindex([N, G, oc//G, CpG, oh, ow, od, Kh, Kw, Kd], [
f'i1*{oc//G}+i2',
'i3',
'i7',
'i8',
'i9'
])
ww.compile_options = xx.compile_options = {"G":G,"C":C}
yy = xx*ww
y = yy.reindex_reduce('add', [N, oc, oh, ow, od], [
'i0',
f'i1*{oc//G}+i2',
'i4',
'i5',
'i6'
])
if self.bias is not None:
b = self.bias.broadcast(y.shape, [0,2,3,4])
y = y + b
return y
return conv3d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
def conv2d(x, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
padding = _pair(padding)
@ -789,13 +731,16 @@ def conv3d(x, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
dilation = _triple(dilation)
out_channels = weight.shape[0]
if jt.flags.use_cuda and jt.cudnn:
return jt.cudnn.ops.cudnn_conv3d(x, weight, *stride, *padding, *dilation, groups)
if groups == 1:
N,C,H,W,D = x.shape
Kh, Kw, Kd = weight.shape[-3:]
oh = (H+padding[0]*2-Kh*dilation[0]+dilation[0]-1)//stride[0]+1
ow = (W+padding[1]*2-Kw*dilation[1]+dilation[1]-1)//stride[1]+1
od = (D+padding[2]*2-Kd*dilation[2]+dilation[2]-1)//stride[2]+1
xx = x.reindex([N,out_channels,C,oh,ow,od,Kh,Kw,Kd], [
N,C,D,H,W = x.shape
Kd, Kh, Kw = weight.shape[-3:]
od = (D+padding[0]*2-Kd*dilation[0]+dilation[0]-1)//stride[0]+1
oh = (H+padding[1]*2-Kh*dilation[1]+dilation[1]-1)//stride[1]+1
ow = (W+padding[2]*2-Kw*dilation[2]+dilation[2]-1)//stride[2]+1
xx = x.reindex([N,out_channels,C,od,oh,ow,Kd,Kh,Kw], [
'i0', # Nid
'i2', # Cid
f'i3*{stride[0]}-{padding[0]}+i6*{dilation[0]}', # Hid+Khid
@ -810,15 +755,15 @@ def conv3d(x, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
y = y + b
return y
else:
N,C,H,W,D = x.shape
Kh, Kw, Kd = weight.shape[-3:]
N,C,D,H,W = x.shape
Kd, Kh, Kw = weight.shape[-3:]
G = groups
CpG = C // G # channels per group
oc = out_channels
oh = (H+padding[0]*2-Kh*dilation[0]+dilation[0]-1)//stride[0]+1
ow = (W+padding[1]*2-Kw*dilation[1]+dilation[1]-1)//stride[1]+1
od = (D+padding[2]*2-Kd*dilation[2]+dilation[2]-1)//stride[2]+1
xx = x.reindex([N,G,oc//G,CpG,oh,ow,od,Kh,Kw,Kd], [
od = (D+padding[0]*2-Kd*dilation[0]+dilation[0]-1)//stride[0]+1
oh = (H+padding[1]*2-Kh*dilation[1]+dilation[1]-1)//stride[1]+1
ow = (W+padding[2]*2-Kw*dilation[2]+dilation[2]-1)//stride[2]+1
xx = x.reindex([N,G,oc//G,CpG,od,oh,ow,Kd,Kh,Kw], [
'i0', # Nid
f'i1*{CpG}+i3', # Gid
f'i4*{stride[0]}-{padding[0]}+i7*{dilation[0]}', # Hid+Khid
@ -835,7 +780,7 @@ def conv3d(x, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
'i9'
])
yy = xx*ww
y = yy.reindex_reduce('add', [N, oc, oh, ow, od], [
y = yy.reindex_reduce('add', [N, oc, od, oh, ow], [
'i0',
f'i1*{oc//G}+i2',
'i4',
@ -906,6 +851,45 @@ class ConvTranspose(Module):
y = y + b
return y
class ConvTranspose3d(Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, \
padding=0, output_padding=0, groups=1, bias=True, dilation=1):
self.in_channels = in_channels
self.out_channels = out_channels
# added
self.dilation = dilation
self.group = groups
assert groups==1, "Group conv not supported yet."
self.kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size, kernel_size, kernel_size)
self.stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
self.dilation = dilation if isinstance(dilation, tuple) else (dilation, dilation, dilation)
# added
self.padding = padding if isinstance(padding, tuple) else (padding, padding, padding)
self.real_padding = (
self.dilation[0] * (self.kernel_size[0] - 1) - self.padding[0],
self.dilation[1] * (self.kernel_size[1] - 1) - self.padding[1],
self.dilation[2] * (self.kernel_size[2] - 1) - self.padding[2])
self.output_padding = output_padding if isinstance (output_padding, tuple) else (output_padding, output_padding, output_padding)
assert self.output_padding[0] < max(self.stride[0], self.dilation[0]) and \
self.output_padding[1] < max(self.stride[1], self.dilation[1]) and \
self.output_padding[2] < max(self.stride[2], self.dilation[2]), \
"output padding must be smaller than max(stride, dilation)"
self.weight = init.invariant_uniform((in_channels, out_channels) + self.kernel_size, dtype="float")
if bias:
fan=1
for i in self.weight.shape[1:]:
fan *= i
bound = 1 / math.sqrt(fan)
self.bias = init.uniform([out_channels], dtype="float", low=-bound, high=bound)
else:
self.bias = None
def execute(self, x):
return conv_transpose3d(x, self.weight, self.bias, self.stride, self.padding, self.output_padding, self.group, self.dilation)
def conv_transpose(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1):
x = input
N,C,H,W = x.shape
@ -944,6 +928,49 @@ def conv_transpose(input, weight, bias=None, stride=1, padding=0, output_padding
assert not bias, "Bias should be none or jittor var"
return y
def conv_transpose3d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1):
x = input
N,C,D,H,W = x.shape
i,o,d,h,w = weight.shape
assert C==i
assert groups==1, "Group conv not supported yet."
stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
dilation = dilation if isinstance(dilation, tuple) else (dilation, dilation, dilation)
# added
padding = padding if isinstance(padding, tuple) else (padding, padding, padding)
output_padding = output_padding if isinstance (output_padding, tuple) else (output_padding, output_padding, output_padding)
assert output_padding[0] < max(stride[0], dilation[0]) and \
output_padding[1] < max(stride[1], dilation[1]) and \
output_padding[2] < max(stride[2], dilation[2]), \
"output padding must be smaller than max(stride, dilation)"
stride_d, stride_h, stride_w = stride
padding_d, padding_h, padding_w = padding
dilation_d, dilation_h, dilation_w = dilation
d_out = (D-1) * stride_d + output_padding[0] - 2*padding_d + 1 + (d-1)*dilation_d
h_out = (H-1) * stride_h + output_padding[1] - 2*padding_h + 1 + (h-1)*dilation_h
w_out = (W-1) * stride_w + output_padding[2] - 2*padding_w + 1 + (w-1)*dilation_w
out_shape = (N, o, d_out, h_out, w_out)
if jt.flags.use_cuda and jt.cudnn:
return jt.cudnn.ops.cudnn_conv3d_backward_x(weight, x, *out_shape[2:], *stride, *padding, *dilation, groups)
shape = (N, i, o, D, H, W, d, h, w)
xx = x.broadcast(shape, (2, 6, 7, 8)) # i,h,w
ww = weight.broadcast(shape, (0, 3, 4, 5)) # N,H,W
y = (ww*xx).reindex_reduce("add", out_shape, [
'i0', # N
'i2', # o
f'i3*{stride_d}-{padding_d}+i6*{dilation_d}', # Did+Kdid
f'i4*{stride_h}-{padding_h}+i7*{dilation_h}', # Hid+Khid
f'i5*{stride_w}-{padding_w}+i8*{dilation_w}', # Wid+KWid
])
if isinstance(bias, jt.Var):
b = bias.broadcast(y.shape, [0,2,3,4])
y = y + b
else:
assert not bias, "Bias should be none or jittor var"
return y
conv_transpose2d = conv_transpose
def pad(x,padding, mode='constant', value=0):
@ -1286,7 +1313,7 @@ def linspace_from_neg_one(grid,num_steps,align_corners):
return jt.array(ra,dtype=grid.dtype)
def make_base_grid_4D(theta,N,C,H,W,align_corners):
base_grid = jt.zeros((N, H, W, 3), dtype=theta.dtype);
base_grid = jt.zeros((N, H, W, 3), dtype=theta.dtype)
base_grid[...,0] = linspace_from_neg_one(theta, W, align_corners)
base_grid[...,1] = jt.unsqueeze(linspace_from_neg_one(theta, H, align_corners),-1)
base_grid[...,-1] = 1

View File

@ -0,0 +1,31 @@
# wget https://github.com/oneapi-src/oneDNN/archive/refs/tags/v2.2.zip
# extract zip
# cd to root folder
mkdir -p build
cd build
make clean
export CC=aarch64-linux-gnu-gcc-8
export CXX=aarch64-linux-gnu-g++-8
cmake .. \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=AARCH64 \
-DCMAKE_LIBRARY_PATH=/usr/aarch64-linux-gnu/lib \
-DCMAKE_BUILD_TYPE=Release
# -DCMAKE_SHARED_LINKER_FLAGS=' -lm ' \
make -j8
name=dnnl_lnx_2.2.0_cpu_gomp_aarch64
mkdir -p $name
cp -r ../include ./$name/
mkdir -p ./$name/lib
cp ./src/libmkldnn.so ./$name/lib/libmkldnn.so
cp -r ../examples ./$name/
cp ./include/oneapi/dnnl/* ./$name/include/oneapi/dnnl/
tar -acvf $name.tgz ./$name/
rsync -avPu $name.tgz jittor-web:Documents/jittor-blog/assets/
ssh jittor-web Documents/jittor-blog.git/hooks/post-update
echo "https://cg.cs.tsinghua.edu.cn/jittor/assets/$name.tgz"
md5sum $name.tgz

View File

@ -486,9 +486,11 @@ void Executor::run_sync(vector<Var*> vars, bool device_sync) {
if (use_cuda)
checkCudaErrors(cudaDeviceSynchronize());
#endif
for (Var* var : op->outputs())
check_nan(var);
}
#ifdef JT_CHECK_NAN
for (Var* var : op->outputs())
check_nan(var);
#endif
LOGvvv << "Finished Op(" >> op->name() << rid >>
"/" >> queue.size() >> ") output:" << op->outputs();
if (is_fused_op) {

View File

@ -238,6 +238,21 @@ struct NanoVector {
v[i] = at(i);
return v;
}
inline void _unpack(int i) {
return;
}
template<class... Args>
void _unpack(int i, int& x, Args&&... args) {
x = this->operator[](i);
_unpack(i+1, std::forward<Args>(args)...);
}
template<class... Args>
void unpack(Args&&... args) {
_unpack(0, std::forward<Args>(args)...);
}
};

View File

@ -104,6 +104,8 @@ int OpCompiler::total_member_count() {
// array need a extra local var
if (op->ops[i]->name()==string("array"))
member_count += 1;
if (op->ops[i]->name()==string("safe_clip"))
member_count += 2;
member_count += v.size();
i += 1;
}
@ -826,11 +828,15 @@ string OpCompiler::__get_fused_src(
const unordered_set<string> members = {
"x", "y", "z", "cond", "output", "extras"
};
const unordered_set<string> scalar_members = {
"left", "right"
};
const unordered_set<string> unchanged = {
"for", "const", "auto", "get_random_engine",
"int", "float", "bool", "CHECK", "STRINGIZE",
"void", "__restrict__", "if", "true", "false",
"Op", "Var", "Node", "itof", "assert", "ASSERT"
"Op", "Var", "Node", "itof", "assert", "ASSERT",
"float64"
};
auto not_change = [&](const string& s) -> bool {
if (unchanged.count(s)) return true;
@ -941,7 +947,8 @@ string OpCompiler::__get_fused_src(
while (l<src.size() && isvar(src[l])) l++;
auto var = src.substr(j, l-j);
if (var[0] == ':' || isdigit(var[0]) || not_change(var) || src[j-1]=='.' || src[j-1]=='>') {} else
if (members.count(var)) {
if (members.count(var) || scalar_members.count(var)) {
bool is_member = members.count(var);
string arg_name = "op" + S(oi) + "_" + var;
if (l<src.size() && src[l]=='[') {
// handle extras[...]
@ -964,7 +971,8 @@ string OpCompiler::__get_fused_src(
" = (("+name3+"Op*)(ops[" + S(oi) + "]))->" + var;
fused_kernel_args += ";\n";
kernel_args.insert(arg_name);
op_members[oi].push_back(arg_name);
if (is_member)
op_members[oi].push_back(arg_name);
}
fused_kernel += arg_name;
j = l-1;

View File

@ -0,0 +1,47 @@
// ***************************************************************
// Copyright (c) 2021 Jittor. All Rights Reserved.
// Maintainers: Dun Liang <randonlang@gmail.com>.
// This file is subject to the terms and conditions defined in
// file 'LICENSE.txt', which is part of this source code package.
// ***************************************************************
#include <cmath>
#include "var.h"
#include "ops/safe_clip_op.h"
#include "ops/op_register.h"
namespace jittor {
#ifndef JIT
SafeClipOp::SafeClipOp(Var* x, float64 left, float64 right) : x(x), left(left), right(right) {
flags.set(NodeFlags::_cpu);
flags.set(NodeFlags::_cuda);
set_type(OpType::element);
y = create_output(nullptr, x->dtype());
}
VarPtr SafeClipOp::grad(Var* out, Var* dout, Var* v, int v_index) {
return dout;
}
void SafeClipOp::infer_shape() {
y->set_shape(x->shape);
}
void SafeClipOp::jit_prepare(JK& jk) {
jk << _CS("[Tx:") << x->dtype() <<']';
}
#else // JIT
void SafeClipOp::jit_run() {
auto* __restrict__ xp = x->ptr<Tx>();
Tx left_value = (Tx)std::max((float64)std::numeric_limits<Tx>::lowest(), left);
Tx right_value = (Tx)std::min((float64)std::numeric_limits<Tx>::max(), right);
auto* __restrict__ yp = y->ptr<Tx>();
index_t num = y->num;
for (index_t i=0; i<num; i++)
yp[i] = xp[i] < left_value ? left_value : (xp[i] > right_value ? right_value : xp[i]);
}
#endif // JIT
} // jittor

View File

@ -0,0 +1,33 @@
// ***************************************************************
// Copyright (c) 2021 Jittor. All Rights Reserved.
// Maintainers: Dun Liang <randonlang@gmail.com>.
// This file is subject to the terms and conditions defined in
// file 'LICENSE.txt', which is part of this source code package.
// ***************************************************************
#pragma once
#include "op.h"
namespace jittor {
struct SafeClipOp : Op {
Var* x, * y;
float64 left, right;
/** Safe clip value to a range, and keep
the gradient pass thought.
* [in] x: input value
* [in] left: float64 clip min value.
* [in] right: float64 clip max value.
*/
// @pybind(safe_clip)
SafeClipOp(Var* x, float64 left, float64 right);
const char* name() const override { return "safe_clip"; }
VarPtr grad(Var* out, Var* dout, Var* v, int v_index) override;
void infer_shape() override;
DECLARE_jit_run;
};
} // jittor

View File

@ -67,6 +67,10 @@ void LoopToFuncPass::run() {
args.push_back(d.get());
continue;
}
if (endswith(d->attrs["lvalue"], "_value")) {
args.push_back(d.get());
continue;
}
}
}
func->push_back(d->clone());

View File

@ -8,6 +8,7 @@
#include <streambuf>
#include "misc/hash.h"
#include "utils/cache_compile.h"
#include "utils/str_utils.h"
namespace jittor {
namespace jit_compiler {
@ -137,7 +138,7 @@ size_t skip_comments(const string& src, size_t i) {
return i;
}
void process(string src, vector<string>& input_names) {
void process(string src, vector<string>& input_names, string& cmd) {
for (size_t i=0; i<src.size(); i++) {
i = skip_comments(src, i);
if (i>=src.size()) break;
@ -159,6 +160,20 @@ void process(string src, vector<string>& input_names) {
input_names.push_back(inc);
}
}
if (l-k>2 && src[k] == 'J' && src[k+1] == 'T' && j-i==6 && src.substr(i,j-i) == "#ifdef") {
auto inc = src.substr(k, l-k);
auto env = getenv(inc.c_str());
if (env && string(env)!="0") {
string dflag = " -D"+inc+"="+string(env)+" -o ";
if (cmd.find(dflag) == string::npos) {
// -D flags should insert before -o flag
auto cmds = split(cmd, " -o ", 2);
if (cmds.size() == 2) {
cmd = cmds[0] + dflag + cmds[1];
}
}
}
}
i=l;
}
}
@ -173,12 +188,6 @@ bool cache_compile(const string& cmd, const string& cache_path, const string& ji
bool ran = false;
output_cache_key = read_all(output_name+".key");
string cd_cmd = cache_path.size() ? "cd " + cache_path + " && " + cmd : cmd;
if (output_cache_key.size() == 0) {
LOGvv << "Cache key of" << output_name << "not found.";
LOGvvv << "Run cmd:" << cmd;
system_with_check(cd_cmd.c_str());
ran = true;
}
string cache_key = cmd;
cache_key += "\n";
unordered_set<string> processed;
@ -192,7 +201,7 @@ bool cache_compile(const string& cmd, const string& cache_path, const string& ji
ASSERT(src.size()) << "Source read failed:" << input_names[i];
auto hash = S(hash64(src));
vector<string> new_names;
process(src, new_names);
process(src, new_names, cd_cmd);
for (auto& name : new_names) {
string full_name;
if (name.substr(0, 4) == "jit/" || name.substr(0, 4) == "gen/")
@ -222,9 +231,15 @@ bool cache_compile(const string& cmd, const string& cache_path, const string& ji
cache_key += hash;
cache_key += "\n";
}
if (output_cache_key.size() == 0) {
LOGvv << "Cache key of" << output_name << "not found.";
LOGvvv << "Run cmd:" << cd_cmd;
system_with_check(cd_cmd.c_str());
ran = true;
}
if (output_cache_key.size() != 0 && output_cache_key != cache_key) {
LOGvv << "Cache key of" << output_name << "changed.";
LOGvvv << "Run cmd:" << cmd;
LOGvvv << "Run cmd:" << cd_cmd;
system_with_check(cd_cmd.c_str());
ran = true;
}
@ -296,7 +311,8 @@ void test_find_nams_error(string cmd) {
void test_process(string src, vector<string> files) {
vector<string> ifiles;
jittor::jit_compiler::process(src, ifiles);
string cmd;
jittor::jit_compiler::process(src, ifiles, cmd);
CHECK(files.size() == ifiles.size());
for (size_t i=0; i<files.size(); i++)
CHECKop(files[i],==,ifiles[i]);

View File

@ -322,6 +322,34 @@ but you can hot fix it by this command:
)";
}
static inline void check_cuda_gcc_version(const string& output) {
/* if such error occur:
error: identifier "__is_assignable" is undefined
this means your gcc version is not match with nvcc,
for example, nvcc 10 support gcc<=7, nvcc 11 support gcc<=9,
https://gist.github.com/ax3l/9489132
*/
string pat = "__is_assignable";
auto id = output.find(pat);
if (id == string::npos) return;
LOGf << output << R"(
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Dear user, your nvcc and gcc version are still not match
after dirty hack, your should install the correct version of g++
or nvcc, for example, nvcc 10 support g++<=7, nvcc 11 support g++<=9,
here is the NVCC Compatibility Matrix:
https://gist.github.com/ax3l/9489132
Please install correct version of gcc, for example:
>>> sudo apt install g++-7
After your g++ is installed, using enviroment variable `cc_path` to
tell jittor use the correct version of g++, for example:
>>> cc_path='g++-7' python3.7 -m jittor.test.test_core
If you still have problems, please contact us:
https://github.com/Jittor/jittor/issues
)";
}
int system_popen(const char* cmd) {
char buf[BUFSIZ];
string cmd2;
@ -342,6 +370,7 @@ int system_popen(const char* cmd) {
}
if (ret) {
check_cuda_unsupport_version(output);
check_cuda_gcc_version(output);
}
return ret;
}

View File

@ -25,15 +25,15 @@ bool endswith(const string& a, const string& b) {
vector<string> split(const string& s, const string& sep, int max_split) {
vector<string> ret;
int pos = -1, pos_next;
int pos = 0, pos_next;
while (1) {
pos_next = s.find(sep, pos+1);
pos_next = s.find(sep, pos);
if (pos_next == (int)string::npos || (int)ret.size() == max_split-1) {
ret.push_back(s.substr(pos+sep.size()));
ret.push_back(s.substr(pos));
return ret;
}
ret.push_back(s.substr(pos+sep.size(), pos_next-pos-sep.size()));
pos = pos_next;
ret.push_back(s.substr(pos, pos_next-pos));
pos = pos_next + sep.size();
}
ASSERT(max_split==0);
return ret;

View File

@ -128,7 +128,58 @@ class TestCudnnConvOp(unittest.TestCase):
check([10,3,100,100], [5,3,3,3], stride=2, padding=0, dilation=1)
check([10,4,40,50], [5,4,5,5], stride=1, padding=1, dilation=1)
check([10,4,40,50], [5,4,4,4], stride=3, padding=1, dilation=1)
def test_conv3d(self):
def check(xshape, wshape, stride=(1,1,1), padding=(0,0,0), dilation=(1,1,1), group=1):
with jt.flag_scope(use_cuda=1):
x = jt.random(xshape)
w = jt.random(wshape)
# y = jt.cudnn.ops.cudnn_conv3d(x, w, *stride, *padding, *dilation, group)
y = jt.nn.conv3d(x, w, None, stride, padding, dilation, group)
masky = jt.rand_like(y)
dx, dw = jt.grad(masky*y, [x, w])
y2 = jt.nn.conv3d(x, w, None, stride, padding, dilation, group)
dx2, dw2 = jt.grad(masky*y2, [x, w])
np.testing.assert_allclose(y.data, y2.data)
np.testing.assert_allclose(dx.data, dx2.data, rtol=1e-5, atol=1e-3)
np.testing.assert_allclose(dw.data, dw2.data, rtol=1e-5, atol=1e-3)
check((2,4,10,10,10), (5,4,3,3,3), (1,1,1), (1,1,1))
check((2,4,10,10,10), (5,4,3,3,3), (2,2,2), (1,1,1))
check((2,4,10,10,10), (5,4,3,3,3), (2,2,2), (0,0,0))
check((2,4,10,10,10), (5,4,3,3,3), (1,2,3), (0,0,0))
check((2,4,10,10,10), (5,4,3,4,5), (1,1,1), (1,1,1))
check((2,4,10,10,10), (5,4,3,4,5), (1,2,3), (0,0,0))
check((2,4,10,10,10), (5,4,3,3,3), (1,1,1), (1,1,1), dilation=(1,2,3))
def test_conv_transpose3d(self):
jt.set_global_seed(10)
def check(xshape, wshape, stride=(1,1,1), padding=(0,0,0), dilation=(1,1,1), group=1):
with jt.flag_scope(use_cuda=1):
x = jt.random(xshape)
w = jt.random(wshape)
y2 = jt.nn.conv_transpose3d(x, w, None, stride, padding, 0, group, dilation)
with jt.flag_scope(use_cuda=1):
# y = jt.cudnn.ops.cudnn_conv3d_backward_x(w, x, *y2.shape[2:], *stride, *padding, *dilation, group)
y = jt.nn.conv_transpose3d(x, w, None, stride, padding, 0, group, dilation)
masky = jt.rand_like(y)
dx, dw = jt.grad(masky*y, [x, w])
dx2, dw2 = jt.grad(masky*y2, [x, w])
np.testing.assert_allclose(y.data, y2.data, rtol=1e-6, atol=1e-4)
np.testing.assert_allclose(dx.data, dx2.data, rtol=1e-6, atol=1e-4)
np.testing.assert_allclose(dw.data, dw2.data, rtol=1e-5, atol=1e-3)
check((2,5,10,10,10), (5,4,3,3,3), (1,1,1), (1,1,1))
check((2,5,10,10,10), (5,4,3,3,3), (2,2,2), (1,1,1))
check((2,5,10,10,10), (5,4,3,3,3), (2,2,2), (0,0,0))
check((2,5,10,10,10), (5,4,3,3,3), (1,2,3), (0,0,0))
check((2,5,10,10,10), (5,4,3,4,5), (1,1,1), (1,1,1))
check((2,5,10,10,10), (5,4,3,4,5), (1,2,3), (0,0,0))
check((2,5,10,10,10), (5,4,3,3,3), (1,1,1), (1,1,1), dilation=(1,2,3))
if __name__ == "__main__":
unittest.main()

View File

@ -161,6 +161,16 @@ class TestDatasetSeed(unittest.TestCase):
for i in range(len(d)):
for j in range(i+1, len(d)):
assert not np.allclose(dd[i], dd[j])
def test_cifar(self):
from jittor.dataset.cifar import CIFAR10
a = CIFAR10()
a.set_attrs(batch_size=16)
for imgs, labels in a:
print(imgs.shape, labels.shape)
assert imgs.shape == [16,32,32,3,]
assert labels.shape == [16,]
break
if __name__ == "__main__":

View File

@ -31,14 +31,14 @@ class TestOneHot(unittest.TestCase):
probs,probs2 = np.random.uniform(0,1,(10)), np.random.uniform(0,1,(10))
probs,probs2 = probs / probs.sum(),probs2 / probs2.sum()
import torch
jc, jc2 = jd.OneHotCategorical(jt.array(probs).reshape(1,-1)),jd.OneHotCategorical(jt.array(probs2).reshape(1,-1))
jc, jc2 = jd.OneHotCategorical(jt.array(probs)),jd.OneHotCategorical(jt.array(probs2))
tc, tc2 = torch.distributions.OneHotCategorical(torch.tensor(probs)),torch.distributions.OneHotCategorical(torch.tensor(probs2))
assert np.allclose(jc.entropy().data,tc.entropy().numpy())
x = np.zeros((4,10))
for _ in range(4):
nx = np.random.randint(0,9)
x[_,nx] = 1
assert np.allclose(jc.log_prob(jt.array(x)),tc.log_prob(torch.tensor(x)))
np.testing.assert_allclose(jc.log_prob(jt.array(x)),tc.log_prob(torch.tensor(x)), atol=1e-5)
assert np.allclose(jd.kl_divergence(jc,jc2),torch.distributions.kl_divergence(tc,tc2))
def test_cate(self):
@ -67,17 +67,55 @@ class TestOneHot(unittest.TestCase):
tn2 = torch.distributions.Normal(mu2,sigma2)
assert np.allclose(jd.kl_divergence(jn,jn2).data,torch.distributions.kl_divergence(tn,tn2).numpy())
def test_categorical(self):
def test_categorical1(self):
import torch
for _ in range(4):
probs,probs2 = np.random.uniform(0,1,(10)), np.random.uniform(0,1,(10))
probs,probs2 = probs / probs.sum(),probs2 / probs2.sum()
jc, jc2 = jd.Categorical(jt.array(probs).reshape(1,-1)),jd.Categorical(jt.array(probs2).reshape(1,-1))
jc, jc2 = jd.Categorical(jt.array(probs)),jd.Categorical(jt.array(probs2))
tc, tc2 = torch.distributions.Categorical(torch.tensor(probs)),torch.distributions.Categorical(torch.tensor(probs2))
assert np.allclose(jc.entropy().data, tc.entropy().numpy()), (jc.entropy().data, tc.entropy().numpy())
x = np.random.randint(0,10,(4))
assert np.allclose(jc.log_prob(x), tc.log_prob(torch.tensor(x)))
np.testing.assert_allclose(jc.log_prob(x), tc.log_prob(torch.tensor(x)), atol=1e-5)
assert np.allclose(jd.kl_divergence(jc,jc2),torch.distributions.kl_divergence(tc,tc2))
def test_categorical2(self):
def check(prob_shape, sample_shape):
import torch
for _ in range(4):
probs,probs2 = np.random.uniform(0,1,prob_shape), np.random.uniform(0,1, prob_shape)
jc, jc2 = jd.Categorical(jt.array(probs)),jd.Categorical(jt.array(probs2))
tc, tc2 = torch.distributions.Categorical(torch.tensor(probs)),torch.distributions.Categorical(torch.tensor(probs2))
assert np.allclose(jc.entropy().data, tc.entropy().numpy()), (jc.entropy().data, tc.entropy().numpy())
x1 = jc.sample(sample_shape)
x2 = tc.sample(sample_shape)
assert tuple(x1.shape) == tuple(x2.shape)
x = np.random.randint(0,prob_shape[-1], tuple(x1.shape))
np.testing.assert_allclose(jc.log_prob(x), tc.log_prob(torch.tensor(x)), atol=1e-5)
np.testing.assert_allclose(jd.kl_divergence(jc,jc2), torch.distributions.kl_divergence(tc,tc2), atol=1e-5)
check((10,), (4,))
check((2,3), (4,))
check((3,4,5,6), (2,))
def test_one_hot_categorical2(self):
def check(prob_shape, sample_shape):
import torch
for _ in range(4):
probs,probs2 = np.random.uniform(0,1,prob_shape), np.random.uniform(0,1, prob_shape)
jc, jc2 = jd.OneHotCategorical(jt.array(probs)),jd.OneHotCategorical(jt.array(probs2))
tc, tc2 = torch.distributions.OneHotCategorical(torch.tensor(probs)),torch.distributions.OneHotCategorical(torch.tensor(probs2))
assert np.allclose(jc.entropy().data, tc.entropy().numpy()), (jc.entropy().data, tc.entropy().numpy())
x1 = jc.sample(sample_shape)
x2 = tc.sample(sample_shape)
assert tuple(x1.shape) == tuple(x2.shape)
x = np.random.randint(0,prob_shape[-1], tuple(x1.shape))
np.testing.assert_allclose(jc.log_prob(x), tc.log_prob(torch.tensor(x)), atol=1e-5)
np.testing.assert_allclose(jd.kl_divergence(jc,jc2), torch.distributions.kl_divergence(tc,tc2), atol=1e-5)
check((10,), (4,))
check((2,3), (4,))
check((3,4,5,6), (2,))
def test_uniform(self):
import torch
@ -98,11 +136,11 @@ class TestOneHot(unittest.TestCase):
prob, prob2 = np.random.uniform(0,1), np.random.uniform(0,1)
jg, jg2 = jd.Geometric(prob),jd.Geometric(prob2)
tg, tg2 = torch.distributions.Geometric(prob),torch.distributions.Geometric(prob2)
assert np.allclose(jg.entropy().data,tg.entropy().numpy())
np.testing.assert_allclose(jg.entropy().data,tg.entropy().numpy(), atol=1e-4)
x = np.random.randint(1,10)
assert np.allclose(jg.log_prob(x),tg.log_prob(torch.tensor(x)))
np.testing.assert_allclose(jg.log_prob(x),tg.log_prob(torch.tensor(x)), atol=1e-4)
# print(jd.kl_divergence(jg,jg2),torch.distributions.kl_divergence(tg,tg2))
assert np.allclose(jd.kl_divergence(jg,jg2),torch.distributions.kl_divergence(tg,tg2))
np.testing.assert_allclose(jd.kl_divergence(jg,jg2),torch.distributions.kl_divergence(tg,tg2), atol=1e-4)
if __name__ == "__main__":
unittest.main()

View File

@ -347,5 +347,11 @@ class TestMatmul(unittest.TestCase):
def test_matmul_example2_cuda(self):
self.test_matmul_example2()
def test_linear1d(self):
linear = jt.nn.Linear(10,20)
a = jt.random((10,))
b = linear(a)
assert b.shape == (20,)
if __name__ == "__main__":
unittest.main()

View File

@ -38,7 +38,7 @@ class TestResnet(unittest.TestCase):
@classmethod
def setUpClass(self):
# hyper-parameters
self.batch_size = 100
self.batch_size = int(os.environ.get("TEST_BATCH_SIZE", "100"))
self.weight_decay = 0.0001
self.momentum = 0.9
self.learning_rate = 0.1

View File

@ -257,14 +257,14 @@ class Tester(unittest.TestCase):
expect = input_data.transpose(2,0,1)
self.assertTrue(np.allclose(expect, output), f"{expect.shape}\n{output.shape}")
ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
ndarray = np.random.randint(low=0, high=255, size=(channels, height, width)).astype(np.uint8)
output = trans(ndarray)
expected_output = ndarray.transpose((2, 0, 1)) / 255.0
self.assertTrue(np.allclose(output, expected_output))
expected_output = ndarray / 255.0
np.testing.assert_allclose(output, expected_output)
ndarray = np.random.rand(height, width, channels).astype(np.float32)
ndarray = np.random.rand(channels, height, width).astype(np.float32)
output = trans(ndarray)
expected_output = ndarray.transpose((2, 0, 1))
expected_output = ndarray
self.assertTrue(np.allclose(output, expected_output))
# separate test for mode '1' PIL images

View File

@ -69,6 +69,13 @@ class TestUnaryOp(unittest.TestCase):
b1 = b.sigmoid().numpy()
assert np.isnan(b1).any() == False
def test_safe_clip(self):
a = jt.array([-1.0,0,0.4,1,2,3])
b = a.safe_clip(0.1, 0.5)
assert np.allclose(b.data, [0.1,0.1,0.4,0.5,0.5,0.5])
da = jt.grad(b, a)
assert (da.data == 1).all()
class TestUnaryOpCuda(TestUnaryOp, test_cuda(2)):
pass

View File

@ -389,7 +389,7 @@ class CenterCrop:
def to_tensor(pic):
"""
Function for turning Image.Image to np.array.
Function for turning Image.Image to np.array with CHW format.
Args::
@ -414,14 +414,13 @@ def to_tensor(pic):
if _is_numpy(pic):
# handle numpy array
if pic.ndim == 2:
pic = pic[:, :, None]
pic = pic[None, :, :]
img = pic.transpose((2, 0, 1))
# backward compatibility
if img.dtype == 'uint8':
return np.float32(img) * np.float32(1/255.0)
if pic.dtype == 'uint8':
return np.float32(pic) * np.float32(1/255.0)
else:
return img
return pic
# handle PIL Image
if pic.mode == 'I':
@ -499,7 +498,7 @@ def _to_jittor_array(pic):
def to_pil_image(pic, mode=None):
"""Convert a tensor or an ndarray to PIL Image.
Args:
pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
pic (Tensor or numpy.ndarray): Image(HWC format) to be converted to PIL Image.
mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
.. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
Returns:
@ -694,7 +693,7 @@ class Gray:
transform = transform.Gray()
img_ = transform(img)
'''
def __init__(self, num_output_channels):
def __init__(self, num_output_channels=1):
self.num_output_channels = num_output_channels
def __call__(self, img:Image.Image):

View File

@ -12,6 +12,9 @@ import hashlib
import urllib.request
from tqdm import tqdm
from jittor_utils import lock
import gzip
import tarfile
import zipfile
def ensure_dir(dir_path):
if not os.path.isdir(dir_path):
@ -69,3 +72,77 @@ def calculate_md5(file_path, chunk_size=1024 * 1024):
def check_md5(file_path, md5, **kwargs):
return md5 == calculate_md5(file_path, **kwargs)
def check_integrity(fpath, md5=None):
if not os.path.isfile(fpath):
return False
if md5 is None:
return True
return check_md5(fpath, md5)
def _is_tarxz(filename):
return filename.endswith(".tar.xz")
def _is_tar(filename):
return filename.endswith(".tar")
def _is_targz(filename):
return filename.endswith(".tar.gz")
def _is_tgz(filename):
return filename.endswith(".tgz")
def _is_gzip(filename):
return filename.endswith(".gz") and not filename.endswith(".tar.gz")
def _is_zip(filename):
return filename.endswith(".zip")
def extract_archive(from_path, to_path=None, remove_finished=False):
if to_path is None:
to_path = os.path.dirname(from_path)
if _is_tar(from_path):
with tarfile.open(from_path, 'r') as tar:
tar.extractall(path=to_path)
elif _is_targz(from_path) or _is_tgz(from_path):
with tarfile.open(from_path, 'r:gz') as tar:
tar.extractall(path=to_path)
elif _is_tarxz(from_path):
# .tar.xz archive only supported in Python 3.x
with tarfile.open(from_path, 'r:xz') as tar:
tar.extractall(path=to_path)
elif _is_gzip(from_path):
to_path = os.path.join(to_path, os.path.splitext(os.path.basename(from_path))[0])
with open(to_path, "wb") as out_f, gzip.GzipFile(from_path) as zip_f:
out_f.write(zip_f.read())
elif _is_zip(from_path):
with zipfile.ZipFile(from_path, 'r') as z:
z.extractall(to_path)
else:
raise ValueError("Extraction of {} not supported".format(from_path))
if remove_finished:
os.remove(from_path)
def download_and_extract_archive(url, download_root, extract_root=None, filename=None,
md5=None, remove_finished=False):
download_root = os.path.expanduser(download_root)
if extract_root is None:
extract_root = download_root
if not filename:
filename = os.path.basename(url)
download_url_to_local(url, filename, download_root, md5)
archive = os.path.join(download_root, filename)
print("Extracting {} to {}".format(archive, extract_root))
extract_archive(archive, extract_root, remove_finished)