mirror of https://github.com/Jittor/Jittor
polish readme
This commit is contained in:
parent
c03a2126e0
commit
7bfc871b1b
|
@ -102,7 +102,7 @@ Jittor框架对环境要求如下:
|
|||
|
||||
注意:目前Jittor通过WSL的方式在Windows操作系统上运行,WSL的安装方法请参考[微软官网](https://docs.microsoft.com/en-us/windows/wsl/install-win10),WSL版本目前尚不支持CUDA。
|
||||
|
||||
Jittor使用Python和C++编写。 它需要用于即时编译的编译器。当前,我们支持三种编译器:
|
||||
Jittor 提供了三种安装方法:docker,pip和手动安装:
|
||||
|
||||
|
||||
|
||||
|
@ -121,7 +121,7 @@ Jittor使用Python和C++编写。 它需要用于即时编译的编译器。当
|
|||
# CPU only(Linux)
|
||||
docker run -it --network host jittor/jittor
|
||||
# CPU and CUDA(Linux)
|
||||
docker run -it --network host jittor/jittor-cuda
|
||||
docker run -it --network host --gpus all jittor/jittor-cuda
|
||||
# CPU only(Mac and Windows)
|
||||
docker run -it -p 8888:8888 jittor/jittor
|
||||
```
|
||||
|
@ -215,7 +215,7 @@ jt.flags.use_cuda = 1
|
|||
### 可选步骤五:测试训练Resnet18
|
||||
|
||||
|
||||
要检查Jittor的完整性,您可以运行Resnet18训练测试。
|
||||
要检查Jittor的完整性,您可以运行Resnet18训练测试。需要注意的是,这个测试需要6G显存。
|
||||
|
||||
```bash
|
||||
python3.7 -m jittor.test.test_resnet
|
||||
|
|
|
@ -120,7 +120,7 @@ We provide a Docker installation method to save you from configuring the environ
|
|||
# CPU only(Linux)
|
||||
docker run -it --network host jittor/jittor
|
||||
# CPU and CUDA(Linux)
|
||||
docker run -it --network host jittor/jittor-cuda
|
||||
docker run -it --network host --gpus all jittor/jittor-cuda
|
||||
# CPU only(Mac and Windows)
|
||||
docker run -it -p 8888:8888 jittor/jittor
|
||||
```
|
||||
|
@ -208,7 +208,7 @@ jt.flags.use_cuda = 1
|
|||
### Optional Step 5: Test Resnet18 training
|
||||
|
||||
|
||||
To check the integrity of Jittor, you can run Resnet18 training test.
|
||||
To check the integrity of Jittor, you can run Resnet18 training test. Note: 6G GPU RAM is requires in this test.
|
||||
|
||||
|
||||
```bash
|
||||
|
|
|
@ -126,7 +126,7 @@ Jittor框架对环境要求如下:
|
|||
|
||||
注意:目前Jittor通过WSL的方式在Windows操作系统上运行,WSL的安装方法请参考[微软官网](https://docs.microsoft.com/en-us/windows/wsl/install-win10),WSL版本目前尚不支持CUDA。
|
||||
|
||||
Jittor使用Python和C++编写。 它需要用于即时编译的编译器。当前,我们支持三种编译器:
|
||||
Jittor 提供了三种安装方法:docker,pip和手动安装:
|
||||
|
||||
Jittor environment requirements:
|
||||
|
||||
|
@ -158,7 +158,7 @@ We provide a Docker installation method to save you from configuring the environ
|
|||
# CPU only(Linux)
|
||||
docker run -it --network host jittor/jittor
|
||||
# CPU and CUDA(Linux)
|
||||
docker run -it --network host jittor/jittor-cuda
|
||||
docker run -it --network host --gpus all jittor/jittor-cuda
|
||||
# CPU only(Mac and Windows)
|
||||
docker run -it -p 8888:8888 jittor/jittor
|
||||
```
|
||||
|
@ -264,9 +264,9 @@ jt.flags.use_cuda = 1
|
|||
|
||||
### 可选步骤五:测试训练Resnet18
|
||||
|
||||
To check the integrity of Jittor, you can run Resnet18 training test.
|
||||
To check the integrity of Jittor, you can run Resnet18 training test. Note: 6G GPU RAM is requires in this test.
|
||||
|
||||
要检查Jittor的完整性,您可以运行Resnet18训练测试。
|
||||
要检查Jittor的完整性,您可以运行Resnet18训练测试。需要注意的是,这个测试需要6G显存。
|
||||
|
||||
```bash
|
||||
python3.7 -m jittor.test.test_resnet
|
||||
|
|
Loading…
Reference in New Issue