polish readme

This commit is contained in:
Dun Liang 2021-01-27 13:55:26 +08:00
parent c03a2126e0
commit 7bfc871b1b
3 changed files with 9 additions and 9 deletions

View File

@ -102,7 +102,7 @@ Jittor框架对环境要求如下:
注意目前Jittor通过WSL的方式在Windows操作系统上运行WSL的安装方法请参考[微软官网](https://docs.microsoft.com/en-us/windows/wsl/install-win10)WSL版本目前尚不支持CUDA。
Jittor使用Python和C++编写。 它需要用于即时编译的编译器。当前,我们支持三种编译器
Jittor 提供了三种安装方法dockerpip和手动安装
@ -121,7 +121,7 @@ Jittor使用Python和C++编写。 它需要用于即时编译的编译器。当
# CPU only(Linux)
docker run -it --network host jittor/jittor
# CPU and CUDA(Linux)
docker run -it --network host jittor/jittor-cuda
docker run -it --network host --gpus all jittor/jittor-cuda
# CPU only(Mac and Windows)
docker run -it -p 8888:8888 jittor/jittor
```
@ -215,7 +215,7 @@ jt.flags.use_cuda = 1
### 可选步骤五测试训练Resnet18
要检查Jittor的完整性您可以运行Resnet18训练测试。
要检查Jittor的完整性您可以运行Resnet18训练测试。需要注意的是这个测试需要6G显存。
```bash
python3.7 -m jittor.test.test_resnet

View File

@ -120,7 +120,7 @@ We provide a Docker installation method to save you from configuring the environ
# CPU only(Linux)
docker run -it --network host jittor/jittor
# CPU and CUDA(Linux)
docker run -it --network host jittor/jittor-cuda
docker run -it --network host --gpus all jittor/jittor-cuda
# CPU only(Mac and Windows)
docker run -it -p 8888:8888 jittor/jittor
```
@ -208,7 +208,7 @@ jt.flags.use_cuda = 1
### Optional Step 5: Test Resnet18 training
To check the integrity of Jittor, you can run Resnet18 training test.
To check the integrity of Jittor, you can run Resnet18 training test. Note: 6G GPU RAM is requires in this test.
```bash

View File

@ -126,7 +126,7 @@ Jittor框架对环境要求如下:
注意目前Jittor通过WSL的方式在Windows操作系统上运行WSL的安装方法请参考[微软官网](https://docs.microsoft.com/en-us/windows/wsl/install-win10)WSL版本目前尚不支持CUDA。
Jittor使用Python和C++编写。 它需要用于即时编译的编译器。当前,我们支持三种编译器
Jittor 提供了三种安装方法dockerpip和手动安装
Jittor environment requirements:
@ -158,7 +158,7 @@ We provide a Docker installation method to save you from configuring the environ
# CPU only(Linux)
docker run -it --network host jittor/jittor
# CPU and CUDA(Linux)
docker run -it --network host jittor/jittor-cuda
docker run -it --network host --gpus all jittor/jittor-cuda
# CPU only(Mac and Windows)
docker run -it -p 8888:8888 jittor/jittor
```
@ -264,9 +264,9 @@ jt.flags.use_cuda = 1
### 可选步骤五测试训练Resnet18
To check the integrity of Jittor, you can run Resnet18 training test.
To check the integrity of Jittor, you can run Resnet18 training test. Note: 6G GPU RAM is requires in this test.
要检查Jittor的完整性您可以运行Resnet18训练测试。
要检查Jittor的完整性您可以运行Resnet18训练测试。需要注意的是这个测试需要6G显存。
```bash
python3.7 -m jittor.test.test_resnet