Merge pull request #108 from Jittor/numpy_code

Numpy code
This commit is contained in:
Gword 2020-07-14 21:20:40 +08:00 committed by GitHub
commit 7cbed2b1ab
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 458 additions and 5 deletions

View File

@ -0,0 +1,123 @@
# ***************************************************************
# Copyright (c) 2020 Jittor. Authors:
# Guowei Yang <471184555@qq.com>
# Dun Liang <randonlang@gmail.com>.
# All Rights Reserved.
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import unittest
import jittor as jt
import numpy as np
class TestCodeOp(unittest.TestCase):
def test(self):
def forward_code(np, data):
a = data["inputs"][0]
b = data["outputs"][0]
np.add(a,a,out=b)
def backward_code(np, data):
dout = data["dout"]
out = data["outputs"][0]
np.copyto(out, dout*2.0)
a = jt.random((5,1))
b = jt.numpy_code(
a.shape,
a.dtype,
[a],
forward_code,
[backward_code],
)
assert np.allclose(b.data,(a+a).data)
da = jt.grad(b,a)
one=np.ones(a.shape)
assert np.allclose(da.data,one*2.0)
def test_multi_input(self):
def forward_code(np, data):
a,b = data["inputs"]
c,d = data["outputs"]
np.add(a,b,out=c)
np.subtract(a,b,out=d)
def backward_code1(np, data):
dout = data["dout"]
out = data["outputs"][0]
np.copyto(out, dout)
def backward_code2(np, data):
dout = data["dout"]
out_index = data["out_index"]
out = data["outputs"][0]
if out_index==0:
np.copyto(out, dout)
else:
np.negative(dout, out)
a = jt.random((5,1))
b = jt.random((5,1))
c, d = jt.numpy_code(
[a.shape, a.shape],
[a.dtype, a.dtype],
[a, b],
forward_code,
[backward_code1,backward_code2],
)
assert np.allclose(c.data,(a+b).data)
assert np.allclose(d.data,(a-b).data)
dca, dcb = jt.grad(c,[a,b])
dda, ddb = jt.grad(d,[a,b])
one=np.ones(a.shape)
mone=one*-1.0
assert np.allclose(dca.data,one)
assert np.allclose(dcb.data,one)
assert np.allclose(dda.data,one)
assert np.allclose(ddb.data,mone)
@unittest.skipIf(True, "Memory leak testing is not in progress, Skip")
def test_memory_leak(self):
def forward_code(np, data):
a,b = data["inputs"]
c,d = data["outputs"]
np.add(a,b,out=c)
np.subtract(a,b,out=d)
def backward_code1(np, data):
dout = data["dout"]
out = data["outputs"][0]
np.copyto(out, dout)
def backward_code2(np, data):
dout = data["dout"]
out_index = data["out_index"]
out = data["outputs"][0]
if out_index==0:
np.copyto(out, dout)
else:
np.negative(dout, out)
for i in range(1000000):
a = jt.random((10000,1))
b = jt.random((10000,1))
c, d = jt.numpy_code(
[a.shape, a.shape],
[a.dtype, a.dtype],
[a, b],
forward_code,
[backward_code1,backward_code2],
)
assert np.allclose(c.data,(a+b).data)
assert np.allclose(d.data,(a-b).data)
dca, dcb = jt.grad(c,[a,b])
dda, ddb = jt.grad(d,[a,b])
one=np.ones(a.shape)
mone=one*-1.0
assert np.allclose(dca.data,one)
assert np.allclose(dcb.data,one)
assert np.allclose(dda.data,one)
assert np.allclose(ddb.data,mone)
if __name__ == "__main__":
unittest.main()

52
src/numpy_func.h Normal file
View File

@ -0,0 +1,52 @@
// ***************************************************************
// Copyright (c) 2020 Jittor. Authors:
// Guowei Yang <471184555@qq.com>
// Dun Liang <randonlang@gmail.com>.
// All Rights Reserved.
// This file is subject to the terms and conditions defined in
// file 'LICENSE.txt', which is part of this source code package.
// ***************************************************************
#pragma once
#include <functional>
#include "common.h"
#include "var_holder.h"
#include "ops/array_op.h"
namespace jittor {
struct NumpyResult;
struct NumpyFunc {
typedef NumpyResult R;
std::function<void(R*)> callback;
std::function<void()> deleter;
std::function<void()> inc_ref;
NumpyFunc() = default;
NumpyFunc(NumpyFunc&& other) : callback(other.callback), deleter(other.deleter), inc_ref(other.inc_ref) {
other.callback = nullptr;
other.deleter = nullptr;
other.inc_ref = nullptr;
};
NumpyFunc(const NumpyFunc& other) : callback(other.callback), deleter(other.deleter), inc_ref(other.inc_ref) {
inc_ref();
};
NumpyFunc(std::function<void(R*)>&& callback) : callback(move(callback)) {}
NumpyFunc(std::function<void(R*)>&& callback, std::function<void()>&& deleter)
: callback(move(callback)), deleter(move(deleter)) {};
NumpyFunc(std::function<void(R*)>&& callback, std::function<void()>&& deleter, std::function<void()>&& inc_ref)
: callback(move(callback)), deleter(move(deleter)), inc_ref(move(inc_ref)) {};
~NumpyFunc() {
if (deleter) {
deleter();
}
}
void operator =(NumpyFunc&& other) { this->~NumpyFunc(); new (this) NumpyFunc(move(other)); }
};
struct NumpyResult {
map<string, vector<DataView>> varrays;
map<string, int> ints;
map<string, DataView> arrays;
};
} // jittor

111
src/ops/numpy_code_op.cc Normal file
View File

@ -0,0 +1,111 @@
// ***************************************************************
// Copyright (c) 2020 Jittor. Authors:
// Guowei Yang <471184555@qq.com>
// Dun Liang <randonlang@gmail.com>.
// All Rights Reserved.
// This file is subject to the terms and conditions defined in
// file 'LICENSE.txt', which is part of this source code package.
// ***************************************************************
#include <cmath>
#include "var.h"
#include "ops/numpy_code_op.h"
#include "ops/op_register.h"
#ifndef JIT
namespace jittor {
static auto make_numpy_code = get_op_info("numpy_code")
.get_constructor<VarPtr, NanoVector, NanoString, vector<Var*>&&, NumpyFunc, NumpyResult&&>();
NumpyCodeOp::NumpyCodeOp(NanoVector shape, NanoString dtype, vector<Var*>&& inputs, NumpyFunc&& forward, vector<NumpyFunc>&& sbackward)
: _inputs(inputs), forward(move(forward))
{
_outputs.push_back(create_output(shape, dtype));
CHECKop(_inputs.size(),<=,10);
ASSERT(_outputs[0]->num >= 0);
for (int i=0; i<sbackward.size(); i++) {
backward.push_back(sbackward[i]);
}
}
NumpyCodeOp::NumpyCodeOp(vector<NanoVector>&& shapes, vector<NanoString>&& dtypes, vector<Var*>&& inputs, NumpyFunc&& forward, vector<NumpyFunc>&& sbackward)
: _inputs(inputs), forward(move(forward))
{
CHECKop(shapes.size(),==,dtypes.size()) << "Number of outputs' shapes and dtypes should be the same";
_outputs.resize(shapes.size());
CHECKop(_inputs.size(),<=,10);
CHECKop(_outputs.size(),<=,10);
CHECKop(_outputs.size(),>,0);
for (int i=0; i<shapes.size(); i++) {
_outputs[i] = create_output(shapes[i], dtypes[i]);
ASSERT(_outputs[i]->num >= 0);
}
for (int i=0; i<sbackward.size(); i++) {
backward.push_back(sbackward[i]);
}
}
NumpyCodeOp::NumpyCodeOp(NanoVector shape, NanoString dtype, vector<Var*>&& inputs, NumpyFunc forward, NumpyResult&& results)
: _inputs(inputs), forward(forward), _results(move(results))
{
_outputs.push_back(create_output(shape, dtype));
CHECKop(_inputs.size(),<=,10);
ASSERT(_outputs[0]->num >= 0);
}
VarPtr NumpyCodeOp::grad(Var* out, Var* dout, Var* v, int v_index) {
NumpyResult result;
int out_index=-1;
for (int i=0; i<_outputs.size(); i++) {
if (_outputs[i] == out) {
out_index = i;
break;
}
}
ASSERT(out_index!=-1);
result.ints["out_index"] = out_index;
result.arrays["dout"].ptr=dout;
result.arrays["dout"].shape=dout->shape;
result.arrays["dout"].dtype=dout->dtype();
auto inputs = clone(_inputs);
inputs.push_back(dout);
return make_numpy_code(
_inputs[v_index]->shape,
_inputs[v_index]->dtype(),
move(inputs),
backward[v_index],
move(result));
}
void NumpyCodeOp::run() {
NumpyResult result;
result.varrays = _results.varrays;
result.ints = _results.ints;
result.arrays = _results.arrays;
if (result.arrays.count("dout") > 0){
result.arrays["dout"].ptr=((Var*)result.arrays["dout"].ptr)->ptr<DataView>();
}
vector<DataView> inputs(_inputs.size());
vector<DataView> outputs(_outputs.size());
for (int i=0; i<inputs.size(); i++) {
inputs[i].ptr=_inputs[i]->ptr<DataView>();
inputs[i].shape=_inputs[i]->shape;
inputs[i].dtype=_inputs[i]->dtype();
}
for (int i=0; i<outputs.size(); i++) {
outputs[i].ptr=_outputs[i]->ptr<DataView>();
outputs[i].shape=_outputs[i]->shape;
outputs[i].dtype=_outputs[i]->dtype();
}
result.varrays["inputs"] = move(inputs);
result.varrays["outputs"] = move(outputs);
forward.callback(&result);
}
} // jittor
#endif // JIT

126
src/ops/numpy_code_op.h Normal file
View File

@ -0,0 +1,126 @@
// ***************************************************************
// Copyright (c) 2020 Jittor. Authors:
// Guowei Yang <471184555@qq.com>
// Dun Liang <randonlang@gmail.com>.
// All Rights Reserved.
// This file is subject to the terms and conditions defined in
// file 'LICENSE.txt', which is part of this source code package.
// ***************************************************************
#pragma once
#include "op.h"
#include "numpy_func.h"
namespace jittor {
struct NumpyCodeOp : Op {
vector<Var*> _inputs;
vector<Var*> _outputs;
NumpyFunc forward;
vector<NumpyFunc> backward;
NumpyResult _results;
/**
Code Operator for easily customized op.
----------------
* [in] shape: the output shape, a integer array
* [in] dtype: the output data type
* [in] inputs: A list of input jittor Vars
* [in] cpu_src: cpu source code string, buildin value:
* in{x}, in{x}_shape{y}, in{x}_stride{y}, in{x}_type, in{x}_p, @in0(...)
* out{x}, out{x}_shape{y}, out{x}_stride{y}, out{x}_type, out{x}_p, @out0(...)
* out, out_shape{y}, out_stride{y}, out_type, out_p, @out(...)
* [in] cpu_grad_src: A list of string, cpu source code string for gradient, represents gradiant for each inputm buildin value, buildin value:
* in{x}, in{x}_shape{y}, in{x}_stride{y}, in{x}_type, in{x}_p, @in0(...)
* out{x}, out{x}_shape{y}, out{x}_stride{y}, out{x}_type, out{x}_p, @out0(...)
* out, out_shape{y}, out_stride{y}, out_type, out_p, @out(...)
* pout{x}, pout{x}_shape{y}, pout{x}_stride{y}, pout{x}_type, pout{x}_p, @pout{x}(...)
* pout, pout_shape{y}, pout_stride{y}, pout_type, pout_p, @pout(...)
* dout, dout_shape{y}, dout_stride{y}, dout_type, dout_p, @dout(...)
* [in] cpu_header: cpu header code string.
* [in] cuda_src: cuda source code string.
* [in] cuda_grad_src: A list of string.
* [in] cuda_header: cuda header code string.
----------------
Example-1::
def forward_code(np, data):
a = data["inputs"][0]
b = data["outputs"][0]
np.add(a,a,out=b)
def backward_code(np, data):
dout = data["dout"]
out = data["outputs"][0]
np.copyto(out, dout*2.0)
a = jt.random((5,1))
b = jt.numpy_code(
a.shape,
a.dtype,
[a],
forward_code,
[backward_code],
)
Example-2::
def forward_code(np, data):
a,b = data["inputs"]
c,d = data["outputs"]
np.add(a,b,out=c)
np.subtract(a,b,out=d)
def backward_code1(np, data):
dout = data["dout"]
out = data["outputs"][0]
np.copyto(out, dout)
def backward_code2(np, data):
dout = data["dout"]
out_index = data["out_index"]
out = data["outputs"][0]
if out_index==0:
np.copyto(out, dout)
else:
np.negative(dout, out)
a = jt.random((5,1))
b = jt.random((5,1))
c, d = jt.numpy_code(
[a.shape, a.shape],
[a.dtype, a.dtype],
[a, b],
forward_code,
[backward_code1,backward_code2],
)
*/
NumpyCodeOp(NanoVector shape, NanoString dtype, vector<Var*>&& inputs, NumpyFunc&& forward, vector<NumpyFunc>&& backward);
// @attrs(multiple_outputs)
NumpyCodeOp(vector<NanoVector>&& shapes, vector<NanoString>&& dtypes, vector<Var*>&& inputs, NumpyFunc&& forward, vector<NumpyFunc>&& backward);
// @pybind(None)
NumpyCodeOp(NanoVector shape, NanoString dtype, vector<Var*>&& inputs, NumpyFunc forward, NumpyResult&& results);
const char* name() const override { return "numpy_code"; }
VarPtr grad(Var* out, Var* dout, Var* v, int v_index) override;
void run() override;
};
} // jittor

View File

@ -354,7 +354,6 @@ DEF_IS(VarHolder*, T) from_py_object(PyObject* obj, unique_ptr<VarHolder>& holde
struct DataView;
DEF_IS(DataView, PyObject*) to_py_object(T a) {
auto obj = GET_OBJ_FROM_RAW_PTR(a.vh);
int64 dims[a.shape.size()];
for (int i=0; i<a.shape.size(); i++)
dims[i] = a.shape[i];
@ -369,13 +368,24 @@ DEF_IS(DataView, PyObject*) to_py_object(T a) {
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_WRITEABLE, // flags
NULL // obj
));
Py_INCREF(obj);
PyObjHolder oh2(obj);
ASSERT(PyArray_SetBaseObject(oh.obj, oh2.obj)==0);
oh2.release();
if (a.vh) {
auto obj = GET_OBJ_FROM_RAW_PTR(a.vh);
PyObjHolder oh2(obj);
Py_INCREF(obj);
ASSERT(PyArray_SetBaseObject(oh.obj, oh2.obj)==0);
oh2.release();
}
return oh.release();
}
struct NumpyFunc;
DEF_IS(NumpyFunc, bool) is_type(PyObject* obj) {
return PyCallable_Check(obj);
}
DEF_IS(NumpyFunc, T) from_py_object(PyObject* obj);
#define CHECK_IS_1(check_type) \
template<typename T> struct is_##check_type : public std::false_type {}; \
template<typename T> \
@ -457,6 +467,7 @@ DEF_IS(FetchFunc, T) from_py_object(PyObject* obj) {
return func;
}
#define CHECK_IS_2(check_type) \
template<typename T> struct is_##check_type : public std::false_type {}; \
template<typename Ta, typename Tb> \
@ -549,4 +560,34 @@ DEF_IS_1(fast_shared_ptr, T) from_py_object(PyObject* obj) {
}
DEF_IS(NumpyFunc, T) from_py_object(PyObject* obj) {
// PyObject_Call
Py_INCREF(obj);
T func(
// callback
[obj](typename T::R* result) {
// import numpy
PyObjHolder np(PyImport_ImportModule("numpy"));
// data = {}
PyObjHolder data(to_py_object(result->varrays));
PyObjHolder data2(to_py_object(result->ints));
PyObjHolder data3(to_py_object(result->arrays));
PyDict_Update(data.obj, data2.obj);
PyDict_Update(data.obj, data3.obj);
// args = []
PyObjHolder args(PyTuple_New(2));
PyTuple_SET_ITEM(args.obj, 0, np.release());
PyTuple_SET_ITEM(args.obj, 1, data.release());
PyObjHolder ret(PyObject_Call(obj, args.obj, nullptr));
},
// deleter
[obj]() { Py_DECREF(obj); },
// inc_ref
[obj]() { Py_INCREF(obj); }
);
return func;
}
} // jittor