mirror of https://github.com/Jittor/Jittor
add param groups
This commit is contained in:
parent
1c19d5837d
commit
a41f827984
|
@ -15,6 +15,7 @@ from jittor import init, Module
|
|||
import numpy as np
|
||||
import math
|
||||
from jittor.pool import Pool, pool, AdaptiveAvgPool2d
|
||||
from jittor.optim import *
|
||||
|
||||
def matmul_transpose(a, b):
|
||||
'''
|
||||
|
@ -154,104 +155,6 @@ class BCEWithLogitsLoss(Module):
|
|||
output = self.bce(output, target)
|
||||
return output
|
||||
|
||||
class SGD(object):
|
||||
""" Usage:
|
||||
optimizer = nn.SGD(model.parameters(), lr)
|
||||
optimizer.step(loss)
|
||||
"""
|
||||
def __init__(self, parameters, lr, momentum=0, weight_decay=0, dampening=0, nesterov=False, param_sync_iter=10000):
|
||||
self.lr = lr
|
||||
self.momentum = momentum
|
||||
self.weight_decay = weight_decay
|
||||
self.dampening = dampening
|
||||
self.nesterov = nesterov
|
||||
self.sgd_step = 0
|
||||
self.param_sync_iter = param_sync_iter
|
||||
|
||||
self.no_grad_parameters = []
|
||||
self.parameters = []
|
||||
self.values = []
|
||||
for p in parameters:
|
||||
# broadcast parameter from 0 node when init
|
||||
if jt.mpi:
|
||||
p.assign(p.mpi_broadcast().detach())
|
||||
if p.is_stop_grad():
|
||||
self.no_grad_parameters.append(p)
|
||||
continue
|
||||
self.parameters.append(p)
|
||||
self.values.append(jt.zeros(p.shape, p.dtype).stop_fuse().stop_grad())
|
||||
|
||||
def step(self, loss):
|
||||
self.sgd_step += 1
|
||||
ps = self.parameters
|
||||
gs = jt.grad(loss, ps)
|
||||
if jt.mpi:
|
||||
for g in gs:
|
||||
g.assign(g.mpi_all_reduce("mean"))
|
||||
if self.sgd_step%self.param_sync_iter==0:
|
||||
for p in ps:
|
||||
p.assign(p.mpi_all_reduce("mean"))
|
||||
for p, g, v in zip(ps, gs, self.values):
|
||||
dp = p * self.weight_decay + g
|
||||
v.assign(self.momentum * v + dp * (1 - self.dampening))
|
||||
if self.nesterov:
|
||||
p -= (dp + self.momentum * v) * self.lr
|
||||
else:
|
||||
p -= v * self.lr
|
||||
# detach with the prev graph to reduce memory consumption
|
||||
p.detach_inplace()
|
||||
# sync all no grad parameters, such as
|
||||
# moving_mean and moving_var in batch_norm
|
||||
# sync such parameters to reduce memory consumption
|
||||
jt.sync(self.no_grad_parameters)
|
||||
|
||||
class Adam(object):
|
||||
""" Usage:
|
||||
optimizer = nn.Adam(model.parameters(), lr)
|
||||
optimizer.step(loss)
|
||||
"""
|
||||
def __init__(self, parameters, lr, eps=1e-8, betas=(0.9, 0.999), weight_decay=0, param_sync_iter=10000):
|
||||
self.lr = lr
|
||||
self.eps = eps
|
||||
self.betas = betas
|
||||
# self.weight_decay = weight_decay
|
||||
assert weight_decay==0, "weight_decay is not supported yet"
|
||||
self.adam_step = 0
|
||||
self.param_sync_iter = param_sync_iter
|
||||
|
||||
self.no_grad_parameters = []
|
||||
self.parameters = []
|
||||
self.values = []
|
||||
self.m = []
|
||||
for p in parameters:
|
||||
if jt.mpi:
|
||||
p.assign(p.mpi_broadcast().detach())
|
||||
if p.is_stop_grad():
|
||||
self.no_grad_parameters.append(p)
|
||||
continue
|
||||
self.parameters.append(p)
|
||||
self.values.append(jt.zeros(p.shape, p.dtype).stop_fuse().stop_grad())
|
||||
self.m.append(jt.zeros(p.shape, p.dtype).stop_fuse().stop_grad())
|
||||
|
||||
def step(self, loss):
|
||||
self.adam_step += 1
|
||||
ps = self.parameters
|
||||
gs = jt.grad(loss, ps)
|
||||
if jt.mpi:
|
||||
for g in gs:
|
||||
g.assign(g.mpi_all_reduce("mean"))
|
||||
if self.adam_step%self.param_sync_iter==0:
|
||||
for p in ps:
|
||||
p.assign(p.mpi_all_reduce("mean"))
|
||||
n, (b0, b1) = float(self.adam_step), self.betas
|
||||
for p, g, v, m in zip(ps, gs, self.values, self.m):
|
||||
m.assign(b0 * m + (1-b0) * g)
|
||||
v.assign(b1 * v + (1-b1) * g * g)
|
||||
step_size = self.lr * jt.sqrt(1-b1**n) / (1-b0 ** n)
|
||||
p -= m * step_size / (jt.sqrt(v) + self.eps)
|
||||
p.detach_inplace()
|
||||
jt.sync(self.no_grad_parameters)
|
||||
|
||||
def softmax(x, dim = None):
|
||||
if dim is None:
|
||||
x = (x - x.max()).exp()
|
||||
|
|
|
@ -0,0 +1,170 @@
|
|||
# ***************************************************************
|
||||
# Copyright (c) 2020 Jittor. Authors:
|
||||
# Guowei Yang <471184555@qq.com>
|
||||
# Guoye Yang <498731903@qq.com>
|
||||
# Wenyang Zhou <576825820@qq.com>
|
||||
# Meng-Hao Guo <guomenghao1997@gmail.com>
|
||||
# Dun Liang <randonlang@gmail.com>.
|
||||
#
|
||||
# All Rights Reserved.
|
||||
# This file is subject to the terms and conditions defined in
|
||||
# file 'LICENSE.txt', which is part of this source code package.
|
||||
# ***************************************************************
|
||||
import jittor as jt
|
||||
import numpy as np
|
||||
|
||||
class Optimizer(object):
|
||||
""" Basic class of Optimizer.
|
||||
Example:
|
||||
```
|
||||
optimizer = nn.SGD(model.parameters(), lr)
|
||||
optimizer.step(loss)
|
||||
```
|
||||
"""
|
||||
def __init__(self, params, lr, param_sync_iter=10000):
|
||||
self.param_groups = []
|
||||
self.lr = lr
|
||||
self.param_sync_iter = param_sync_iter
|
||||
|
||||
assert len(params) > 0, "Length of parameters should not be zero"
|
||||
if not isinstance(params[0], dict):
|
||||
params = [{'params': params}]
|
||||
for pg in params:
|
||||
assert isinstance(pg, dict)
|
||||
self.param_groups.append(pg)
|
||||
self.n_step = 0
|
||||
|
||||
def pre_step(self, loss):
|
||||
""" something should be done before step,
|
||||
such as calc gradients, mpi sync, and so on.
|
||||
Example:
|
||||
```
|
||||
class MyOptimizer(Optimizer):
|
||||
def step(self, loss):
|
||||
self.post_step(loss)
|
||||
...
|
||||
```
|
||||
"""
|
||||
# clean prev grads
|
||||
params = []
|
||||
params_has_grad = []
|
||||
for pg in self.param_groups:
|
||||
pg["grads"] = [None] * len(pg['params'])
|
||||
for p in pg['params']:
|
||||
params.append(p)
|
||||
if not p.is_stop_grad():
|
||||
params_has_grad.append(p)
|
||||
|
||||
# sync params, reduce computing graph size
|
||||
jt.sync(params)
|
||||
|
||||
# get gradient
|
||||
grads = jt.grad(loss, params_has_grad)
|
||||
|
||||
# sync grads and model if in mpi
|
||||
if jt.mpi:
|
||||
for g in grads:
|
||||
g.assign(g.mpi_all_reduce("mean"))
|
||||
if self.n_step % self.param_sync_iter == 0:
|
||||
for p in params:
|
||||
p.assign(p.mpi_all_reduce("mean"))
|
||||
self.n_step += 1
|
||||
|
||||
# set up grads in param_groups
|
||||
pid = 0
|
||||
for pg in self.param_groups:
|
||||
pg_grads = pg["grads"]
|
||||
for i, p in enumerate(pg['params']):
|
||||
if not p.is_stop_grad():
|
||||
pg_grads[i] = grads[pid]
|
||||
pid += 1
|
||||
|
||||
def step(self, loss):
|
||||
self.pre_step(loss)
|
||||
for pg in self.param_groups:
|
||||
lr = pg.get("lr", self.lr)
|
||||
for p, g in zip(pg["params"], pg["grads"]):
|
||||
if p.is_stop_grad(): continue
|
||||
p -= g * lr
|
||||
# detach with the prev graph to reduce memory consumption
|
||||
p.detach_inplace()
|
||||
|
||||
|
||||
class SGD(Optimizer):
|
||||
""" SGD Optimizer.
|
||||
Example:
|
||||
```
|
||||
optimizer = nn.SGD(model.parameters(), lr, momentum=0.9)
|
||||
optimizer.step(loss)
|
||||
```
|
||||
"""
|
||||
def __init__(self, params, lr, momentum=0, weight_decay=0, dampening=0, nesterov=False):
|
||||
super().__init__(params, lr)
|
||||
self.momentum = momentum
|
||||
self.weight_decay = weight_decay
|
||||
self.dampening = dampening
|
||||
self.nesterov = nesterov
|
||||
|
||||
# initialize required arguments
|
||||
for pg in self.param_groups:
|
||||
values = pg["values"] = []
|
||||
for p in pg["params"]:
|
||||
values.append(jt.zeros(p.shape, p.dtype).stop_fuse().stop_grad())
|
||||
|
||||
def step(self, loss):
|
||||
self.pre_step(loss)
|
||||
for pg in self.param_groups:
|
||||
# get arguments from each param_groups
|
||||
lr = pg.get("lr", self.lr)
|
||||
momentum = pg.get("momentum", self.momentum)
|
||||
weight_decay = pg.get("weight_decay", self.weight_decay)
|
||||
dampening = pg.get("dampening", self.dampening)
|
||||
nesterov = pg.get("nesterov", self.nesterov)
|
||||
|
||||
# optimize main body
|
||||
for p, g, v in zip(pg["params"], pg["grads"], pg["values"]):
|
||||
dp = p * weight_decay + g
|
||||
v.assign(momentum * v + dp * (1 - dampening))
|
||||
if nesterov:
|
||||
p -= (dp + momentum * v) * lr
|
||||
else:
|
||||
p -= v * lr
|
||||
p.detach_inplace()
|
||||
|
||||
class Adam(Optimizer):
|
||||
""" Adam Optimizer.
|
||||
Example:
|
||||
```
|
||||
optimizer = nn.Adam(model.parameters(), lr, eps=1e-8, betas=(0.9, 0.999))
|
||||
optimizer.step(loss)
|
||||
```
|
||||
"""
|
||||
def __init__(self, params, lr, eps=1e-8, betas=(0.9, 0.999), weight_decay=0):
|
||||
super().__init__(params, lr)
|
||||
self.eps = eps
|
||||
self.betas = betas
|
||||
# self.weight_decay = weight_decay
|
||||
assert weight_decay==0, "weight_decay is not supported yet"
|
||||
|
||||
# initialize required arguments for each param_groups
|
||||
for pg in self.param_groups:
|
||||
values = pg["values"] = []
|
||||
m = pg["m"] = []
|
||||
for p in pg["params"]:
|
||||
values.append(jt.zeros(p.shape, p.dtype).stop_fuse().stop_grad())
|
||||
m.append(jt.zeros(p.shape, p.dtype).stop_fuse().stop_grad())
|
||||
|
||||
def step(self, loss):
|
||||
self.pre_step(loss)
|
||||
n = float(self.n_step)
|
||||
for pg in self.param_groups:
|
||||
# get arguments from each param_groups
|
||||
lr = pg.get("lr", self.lr)
|
||||
eps = pg.get("eps", self.eps)
|
||||
b0, b1 = pg.get("betas", self.betas)
|
||||
for p, g, v, m in zip(pg["params"], pg["grads"], pg["values"], pg["m"]):
|
||||
m.assign(b0 * m + (1-b0) * g)
|
||||
v.assign(b1 * v + (1-b1) * g * g)
|
||||
step_size = lr * jt.sqrt(1-b1**n) / (1-b0 ** n)
|
||||
p -= m * step_size / (jt.sqrt(v) + eps)
|
||||
p.detach_inplace()
|
|
@ -0,0 +1,27 @@
|
|||
# ***************************************************************
|
||||
# Copyright (c) 2020 Jittor. Authors:
|
||||
# Dun Liang <randonlang@gmail.com>.
|
||||
# All Rights Reserved.
|
||||
# This file is subject to the terms and conditions defined in
|
||||
# file 'LICENSE.txt', which is part of this source code package.
|
||||
# ***************************************************************
|
||||
import unittest
|
||||
import jittor as jt
|
||||
import numpy as np
|
||||
from jittor import nn
|
||||
|
||||
class TestOptimizer(unittest.TestCase):
|
||||
def test_param_groups(self):
|
||||
pa = jt.ones((1,))
|
||||
pb = jt.ones((1,))
|
||||
data = jt.ones((1,))
|
||||
opt = nn.SGD([
|
||||
{"params":[pa], "lr":0.1},
|
||||
{"params":[pb]},
|
||||
], 1)
|
||||
opt.step(pa*data+pb*data)
|
||||
assert pa.data == 0.9 and pb.data == 0, (pa, pb)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in New Issue