mirror of https://github.com/Jittor/Jittor
update
This commit is contained in:
parent
dfa1a4d999
commit
a6caacf54e
|
@ -16,11 +16,9 @@ class TestCodeOp(unittest.TestCase):
|
||||||
c,d = data["outputs"]
|
c,d = data["outputs"]
|
||||||
np.add(a,b,out=c)
|
np.add(a,b,out=c)
|
||||||
np.subtract(a,b,out=d)
|
np.subtract(a,b,out=d)
|
||||||
p, r = c.__array_interface__['data']
|
|
||||||
|
|
||||||
def backward_code1(self, np, data):
|
def backward_code1(self, np, data):
|
||||||
dout = data["dout"]
|
dout = data["dout"]
|
||||||
a,b,dout = data["inputs"]
|
|
||||||
out = data["outputs"][0]
|
out = data["outputs"][0]
|
||||||
np.copyto(out, dout)
|
np.copyto(out, dout)
|
||||||
|
|
||||||
|
|
|
@ -44,11 +44,9 @@ struct NumpyFunc {
|
||||||
};
|
};
|
||||||
|
|
||||||
struct NumpyResult {
|
struct NumpyResult {
|
||||||
// vector<Allocation> allocations;
|
|
||||||
map<string, vector<DataView>> varrays;
|
map<string, vector<DataView>> varrays;
|
||||||
map<string, int> ints;
|
map<string, int> ints;
|
||||||
map<string, DataView> arrays;
|
map<string, DataView> arrays;
|
||||||
// mem ptr, dtype, shape --> numpy array
|
|
||||||
};
|
};
|
||||||
|
|
||||||
} // jittor
|
} // jittor
|
|
@ -30,11 +30,7 @@ NumpyCodeOp::NumpyCodeOp(NanoVector shape, NanoString dtype, vector<Var*>&& inpu
|
||||||
{
|
{
|
||||||
_outputs.push_back(create_output(shape, dtype));
|
_outputs.push_back(create_output(shape, dtype));
|
||||||
CHECKop(_inputs.size(),<=,10);
|
CHECKop(_inputs.size(),<=,10);
|
||||||
|
ASSERT(_outputs[0]->num >= 0);
|
||||||
if (_outputs[0]->num < 0) {
|
|
||||||
flags.set(NodeFlags::_vary_shape);
|
|
||||||
check_vary_shape(_outputs[0]->shape);
|
|
||||||
}
|
|
||||||
for (int i=0; i<sbackward.size(); i++) {
|
for (int i=0; i<sbackward.size(); i++) {
|
||||||
backward.push_back(sbackward[i]);
|
backward.push_back(sbackward[i]);
|
||||||
}
|
}
|
||||||
|
@ -50,10 +46,7 @@ NumpyCodeOp::NumpyCodeOp(vector<NanoVector>&& shapes, vector<NanoString>&& dtype
|
||||||
CHECKop(_outputs.size(),>,0);
|
CHECKop(_outputs.size(),>,0);
|
||||||
for (int i=0; i<shapes.size(); i++) {
|
for (int i=0; i<shapes.size(); i++) {
|
||||||
_outputs[i] = create_output(shapes[i], dtypes[i]);
|
_outputs[i] = create_output(shapes[i], dtypes[i]);
|
||||||
if (_outputs[i]->num < 0) {
|
ASSERT(_outputs[i]->num >= 0);
|
||||||
flags.set(NodeFlags::_vary_shape);
|
|
||||||
check_vary_shape(_outputs[i]->shape);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
for (int i=0; i<sbackward.size(); i++) {
|
for (int i=0; i<sbackward.size(); i++) {
|
||||||
backward.push_back(sbackward[i]);
|
backward.push_back(sbackward[i]);
|
||||||
|
@ -64,16 +57,12 @@ NumpyCodeOp::NumpyCodeOp(NanoVector shape, NanoString dtype, vector<Var*>&& inpu
|
||||||
: _inputs(inputs), forward(forward), _results(move(results))
|
: _inputs(inputs), forward(forward), _results(move(results))
|
||||||
{
|
{
|
||||||
_outputs.push_back(create_output(shape, dtype));
|
_outputs.push_back(create_output(shape, dtype));
|
||||||
CHECKop(_inputs.size(),<=,10);
|
CHECKop(_inputs.size(),<=,10)
|
||||||
|
ASSERT(_outputs[0]->num >= 0);
|
||||||
if (_outputs[0]->num < 0) {
|
|
||||||
flags.set(NodeFlags::_vary_shape);
|
|
||||||
check_vary_shape(_outputs[0]->shape);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
VarPtr NumpyCodeOp::grad(Var* out, Var* dout, Var* v, int v_index) {
|
VarPtr NumpyCodeOp::grad(Var* out, Var* dout, Var* v, int v_index) {
|
||||||
NumpyResult result;
|
NumpyResult result;
|
||||||
|
|
||||||
int out_index=-1;
|
int out_index=-1;
|
||||||
for (int i=0; i<_outputs.size(); i++) {
|
for (int i=0; i<_outputs.size(); i++) {
|
||||||
|
@ -84,18 +73,18 @@ VarPtr NumpyCodeOp::grad(Var* out, Var* dout, Var* v, int v_index) {
|
||||||
}
|
}
|
||||||
ASSERT(out_index!=-1);
|
ASSERT(out_index!=-1);
|
||||||
result.ints["out_index"] = out_index;
|
result.ints["out_index"] = out_index;
|
||||||
result.arrays["dout"].ptr=dout;
|
result.arrays["dout"].ptr=dout;
|
||||||
result.arrays["dout"].shape=dout->shape;
|
result.arrays["dout"].shape=dout->shape;
|
||||||
result.arrays["dout"].dtype=dout->dtype();
|
result.arrays["dout"].dtype=dout->dtype();
|
||||||
auto inputs = clone(_inputs);
|
auto inputs = clone(_inputs);
|
||||||
inputs.push_back(dout);
|
inputs.push_back(dout);
|
||||||
|
|
||||||
return make_numpy_code(
|
return make_numpy_code(
|
||||||
_inputs[v_index]->shape,
|
_inputs[v_index]->shape,
|
||||||
_inputs[v_index]->dtype(),
|
_inputs[v_index]->dtype(),
|
||||||
move(inputs),
|
move(inputs),
|
||||||
backward[v_index],
|
backward[v_index],
|
||||||
move(result));
|
move(result));
|
||||||
}
|
}
|
||||||
|
|
||||||
void NumpyCodeOp::run() {
|
void NumpyCodeOp::run() {
|
||||||
|
@ -121,7 +110,7 @@ void NumpyCodeOp::run() {
|
||||||
}
|
}
|
||||||
result.varrays["inputs"] = move(inputs);
|
result.varrays["inputs"] = move(inputs);
|
||||||
result.varrays["outputs"] = move(outputs);
|
result.varrays["outputs"] = move(outputs);
|
||||||
forward.callback(&result);
|
forward.callback(&result);
|
||||||
}
|
}
|
||||||
|
|
||||||
} // jittor
|
} // jittor
|
||||||
|
|
|
@ -19,13 +19,103 @@ struct NumpyCodeOp : Op {
|
||||||
vector<NumpyFunc> backward;
|
vector<NumpyFunc> backward;
|
||||||
NumpyResult _results;
|
NumpyResult _results;
|
||||||
|
|
||||||
|
/**
|
||||||
|
Code Operator for easily customized op.
|
||||||
|
|
||||||
|
----------------
|
||||||
|
|
||||||
|
* [in] shape: the output shape, a integer array
|
||||||
|
|
||||||
|
* [in] dtype: the output data type
|
||||||
|
|
||||||
|
* [in] inputs: A list of input jittor Vars
|
||||||
|
|
||||||
|
* [in] cpu_src: cpu source code string, buildin value:
|
||||||
|
|
||||||
|
* in{x}, in{x}_shape{y}, in{x}_stride{y}, in{x}_type, in{x}_p, @in0(...)
|
||||||
|
* out{x}, out{x}_shape{y}, out{x}_stride{y}, out{x}_type, out{x}_p, @out0(...)
|
||||||
|
* out, out_shape{y}, out_stride{y}, out_type, out_p, @out(...)
|
||||||
|
|
||||||
|
* [in] cpu_grad_src: A list of string, cpu source code string for gradient, represents gradiant for each inputm buildin value, buildin value:
|
||||||
|
|
||||||
|
* in{x}, in{x}_shape{y}, in{x}_stride{y}, in{x}_type, in{x}_p, @in0(...)
|
||||||
|
* out{x}, out{x}_shape{y}, out{x}_stride{y}, out{x}_type, out{x}_p, @out0(...)
|
||||||
|
* out, out_shape{y}, out_stride{y}, out_type, out_p, @out(...)
|
||||||
|
* pout{x}, pout{x}_shape{y}, pout{x}_stride{y}, pout{x}_type, pout{x}_p, @pout{x}(...)
|
||||||
|
* pout, pout_shape{y}, pout_stride{y}, pout_type, pout_p, @pout(...)
|
||||||
|
* dout, dout_shape{y}, dout_stride{y}, dout_type, dout_p, @dout(...)
|
||||||
|
|
||||||
|
* [in] cpu_header: cpu header code string.
|
||||||
|
|
||||||
|
* [in] cuda_src: cuda source code string.
|
||||||
|
|
||||||
|
* [in] cuda_grad_src: A list of string.
|
||||||
|
|
||||||
|
* [in] cuda_header: cuda header code string.
|
||||||
|
|
||||||
|
----------------
|
||||||
|
|
||||||
|
Example-1::
|
||||||
|
|
||||||
|
def forward_code(self, np, data):
|
||||||
|
a = data["inputs"]
|
||||||
|
b = data["outputs"]
|
||||||
|
np.add(a,a,out=b)
|
||||||
|
|
||||||
|
def backward_code(self, np, data):
|
||||||
|
dout = data["dout"]
|
||||||
|
out = data["outputs"][0]
|
||||||
|
np.copyto(out, dout)
|
||||||
|
|
||||||
|
a = jt.random((5,1))
|
||||||
|
c, d = jt.numpy_code(
|
||||||
|
a.shape,
|
||||||
|
a.dtype,
|
||||||
|
[a],
|
||||||
|
forward_code,
|
||||||
|
[backward_code],
|
||||||
|
)
|
||||||
|
|
||||||
|
Example-2::
|
||||||
|
|
||||||
|
def forward_code(self, np, data):
|
||||||
|
a,b = data["inputs"]
|
||||||
|
c,d = data["outputs"]
|
||||||
|
np.add(a,b,out=c)
|
||||||
|
np.subtract(a,b,out=d)
|
||||||
|
|
||||||
|
def backward_code1(self, np, data):
|
||||||
|
dout = data["dout"]
|
||||||
|
out = data["outputs"][0]
|
||||||
|
np.copyto(out, dout)
|
||||||
|
|
||||||
|
def backward_code2(self, np, data):
|
||||||
|
dout = data["dout"]
|
||||||
|
out_index = data["out_index"]
|
||||||
|
out = data["outputs"][0]
|
||||||
|
if out_index==0:
|
||||||
|
np.copyto(out, dout)
|
||||||
|
else:
|
||||||
|
np.negative(dout, out)
|
||||||
|
|
||||||
|
a = jt.random((5,1))
|
||||||
|
b = jt.random((5,1))
|
||||||
|
c, d = jt.numpy_code(
|
||||||
|
[a.shape, a.shape],
|
||||||
|
[a.dtype, a.dtype],
|
||||||
|
[a, b],
|
||||||
|
forward_code,
|
||||||
|
[backward_code1,backward_code2],
|
||||||
|
)
|
||||||
|
|
||||||
|
*/
|
||||||
NumpyCodeOp(NanoVector shape, NanoString dtype, vector<Var*>&& inputs, NumpyFunc&& forward, vector<NumpyFunc>&& backward);
|
NumpyCodeOp(NanoVector shape, NanoString dtype, vector<Var*>&& inputs, NumpyFunc&& forward, vector<NumpyFunc>&& backward);
|
||||||
|
|
||||||
// @attrs(multiple_outputs)
|
// @attrs(multiple_outputs)
|
||||||
NumpyCodeOp(vector<NanoVector>&& shapes, vector<NanoString>&& dtypes, vector<Var*>&& inputs, NumpyFunc&& forward, vector<NumpyFunc>&& backward);
|
NumpyCodeOp(vector<NanoVector>&& shapes, vector<NanoString>&& dtypes, vector<Var*>&& inputs, NumpyFunc&& forward, vector<NumpyFunc>&& backward);
|
||||||
|
|
||||||
// @pybind(None)
|
// @pybind(None)
|
||||||
NumpyCodeOp(NanoVector shape, NanoString dtype, vector<Var*>&& inputs, NumpyFunc forward, NumpyResult&& results);
|
NumpyCodeOp(NanoVector shape, NanoString dtype, vector<Var*>&& inputs, NumpyFunc forward, NumpyResult&& results);
|
||||||
|
|
||||||
const char* name() const override { return "numpy_code"; }
|
const char* name() const override { return "numpy_code"; }
|
||||||
VarPtr grad(Var* out, Var* dout, Var* v, int v_index) override;
|
VarPtr grad(Var* out, Var* dout, Var* v, int v_index) override;
|
||||||
|
|
|
@ -67,7 +67,7 @@ DEF_IS(int, bool) is_type(PyObject* obj) {
|
||||||
return PyLong_CheckExact(obj);
|
return PyLong_CheckExact(obj);
|
||||||
}
|
}
|
||||||
|
|
||||||
DEF_IS(int, PyObject*) to_py_object(const int& a) {
|
DEF_IS(int, PyObject*) to_py_object(const T& a) {
|
||||||
return PyLong_FromLong(a);
|
return PyLong_FromLong(a);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue