polish readme

This commit is contained in:
Dun Liang 2021-01-20 14:09:55 +08:00
parent d73b038946
commit c1731cb215
3 changed files with 38 additions and 9 deletions

View File

@ -4,10 +4,18 @@
[快速开始](#快速开始) | [安装](#安装) | [教程](#教程)
Jittor 是一个基于即时编译和元算子的高性能深度学习框架整个框架在即时编译的同时还集成了强大的Op编译器和调优器为您的模型生成定制化的高性能代码。
Jittor 是一个基于即时编译和元算子的高性能深度学习框架整个框架在即时编译的同时还集成了强大的Op编译器和调优器为您的模型生成定制化的高性能代码。Jittor还包含了丰富的高性能模型库涵盖范围包括图像识别检测分割生成可微渲染几何学习强化学习等等。
Jittor前端语言为Python。前端使用了模块化的设计这是目前最主流的深度学习框架接口设计。后端则使用高性能语言编写如CUDAC++。
Jittor前端语言为Python。前端使用了模块化和动态图执行的设计这是目前最主流的深度学习框架接口设计。后端则使用高性能语言编写如CUDAC++。
相关链接:
* [Jittor官网](https://cg.cs.tsinghua.edu.cn/jittor/)
* [Jittor教程](https://cg.cs.tsinghua.edu.cn/jittor/tutorial/)
* [Jittor模型库](https://cg.cs.tsinghua.edu.cn/jittor/resources/)
* [Jittor文档](https://cg.cs.tsinghua.edu.cn/jittor/assets/docs/index.html)
下面的代码演示了如何一步一步使用Python代码从头对一个双层神经网络建模。
@ -118,7 +126,7 @@ docker run -it --network host jittor/jittor-cuda
## Pip 安装
如果您没有准备好环境或者使用的不是Ubuntu操作系统 推荐使用docker安装 如果您已经装好编译器和对应版本的Python,我们强烈推荐您使用这种方法
如果您没有准备好环境或者使用的不是Ubuntu操作系统 推荐使用**docker安装** 如果您已经装好编译器和对应版本的Python,我们强烈推荐您使用这种方法
(如果无法访问github, 可以通过jittor主页下载):
```bash

View File

@ -3,10 +3,18 @@
[Quickstart](#quickstart) | [Install](#install) | [Tutorial](#tutorial) | [Chinese](./README.cn.md)
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just-in-time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code with specialized for your model.
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just-in-time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code with specialized for your model. Jittor also contains a wealth of high-performance model libraries, including: image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement learning, etc. .
The front-end language is Python. Module Design is used in the front-end, which is the most popular design for deeplearning framework interface. The back-end is implemented by high performance language, such as CUDA,C++.
The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deeplearning framework interface. The back-end is implemented by high performance language, such as CUDA,C++.
Related Links:
* [Jittor Website](https://cg.cs.tsinghua.edu.cn/jittor/)
* [Jittor Tutorials](https://cg.cs.tsinghua.edu.cn/jittor/tutorial/)
* [Jittor Models](https://cg.cs.tsinghua.edu.cn/jittor/resources/)
* [Jittor Documents](https://cg.cs.tsinghua.edu.cn/jittor/assets/docs/index.html)
The following example shows how to model a two-layer neural network step by step and train from scratch In a few lines of Python code.

View File

@ -5,13 +5,26 @@
[快速开始](#快速开始) | [安装](#安装) | [教程](#教程)
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just-in-time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code with specialized for your model.
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just-in-time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code with specialized for your model. Jittor also contains a wealth of high-performance model libraries, including: image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement learning, etc. .
Jittor 是一个基于即时编译和元算子的高性能深度学习框架整个框架在即时编译的同时还集成了强大的Op编译器和调优器为您的模型生成定制化的高性能代码。
Jittor 是一个基于即时编译和元算子的高性能深度学习框架整个框架在即时编译的同时还集成了强大的Op编译器和调优器为您的模型生成定制化的高性能代码。Jittor还包含了丰富的高性能模型库涵盖范围包括图像识别检测分割生成可微渲染几何学习强化学习等等。
The front-end language is Python. Module Design is used in the front-end, which is the most popular design for deeplearning framework interface. The back-end is implemented by high performance language, such as CUDA,C++.
The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deeplearning framework interface. The back-end is implemented by high performance language, such as CUDA,C++.
Jittor前端语言为Python。前端使用了模块化和动态图执行的设计这是目前最主流的深度学习框架接口设计。后端则使用高性能语言编写如CUDAC++。
Related Links:
* [Jittor Website](https://cg.cs.tsinghua.edu.cn/jittor/)
* [Jittor Tutorials](https://cg.cs.tsinghua.edu.cn/jittor/tutorial/)
* [Jittor Models](https://cg.cs.tsinghua.edu.cn/jittor/resources/)
* [Jittor Documents](https://cg.cs.tsinghua.edu.cn/jittor/assets/docs/index.html)
相关链接:
* [Jittor官网](https://cg.cs.tsinghua.edu.cn/jittor/)
* [Jittor教程](https://cg.cs.tsinghua.edu.cn/jittor/tutorial/)
* [Jittor模型库](https://cg.cs.tsinghua.edu.cn/jittor/resources/)
* [Jittor文档](https://cg.cs.tsinghua.edu.cn/jittor/assets/docs/index.html)
Jittor前端语言为Python。前端使用了模块化的设计这是目前最主流的深度学习框架接口设计。后端则使用高性能语言编写如CUDAC++。
The following example shows how to model a two-layer neural network step by step and train from scratch In a few lines of Python code.