Merge pull request #156 from Jittor/lxl

add misc and bcelogits with pos_weight
This commit is contained in:
Xiang-Li Li 2020-11-27 15:12:00 +08:00 committed by GitHub
commit d11c3ad40b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 199 additions and 110 deletions

View File

@ -178,7 +178,7 @@ void CudnnConvBackwardXOp::jit_run() {
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD,
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED
};
int num_algos = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT;
int num_algos = CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT;
int perf_count;
cudnnConvolutionBwdDataAlgoPerf_t perf_results[num_algos];
cudnnConvolutionBwdDataAlgo_t algo;

View File

@ -6,16 +6,12 @@
#include "var.h"
#include "cutt_transpose_op.h"
#include "ops/op_register.h"
#include <iostream>
#ifdef JIT
#include "cutt.h"
#endif
#include "cutt_warper.h"
#include "misc/stack_vector.h"
namespace jittor {
#ifndef JIT
static auto make_transpose = get_op_info("cutt_transpose")
.get_constructor<VarPtr, Var*, NanoVector>();
@ -58,52 +54,49 @@ VarPtr CuttTransposeOp::grad(Var* out, Var* dout, Var* v, int v_index) {
return make_transpose(dout, reverse);
}
void CuttTransposeOp::jit_prepare(JK& jk) {
jk << _CS("[Tx:") << x->dtype();
jk << _CS("][DIM=") << JK::hex1(axes.size());
for (uint i=0; i<axes.size(); i++)
jk << _CS("][AXES") << JK::hex1(axes[i]) << '=' << JK::hex1(i);
jk << ']';
}
unordered_map<string, unsigned int> cutt_plan_cache;
#else // JIT
#ifdef JIT_cuda
extern unordered_map<string, unsigned int> cutt_plan_cache;
void CuttTransposeOp::jit_run() {
auto* __restrict__ xp = x->ptr<Tx>();
auto* __restrict__ yp = y->ptr<Tx>();
vector<int> permutation, permutation2;
vector<int> y_shape;
vector<int> x_shape;
@for(i, 0, DIM, permutation.push_back(DIM-1-AXES@i);)
@for(i, 0, DIM, permutation2.push_back(permutation[DIM-1-@i@@]);)
std::vector<int> reverse;
reverse.reserve(permutation2.size());
for (uint i=0; i<permutation2.size(); i++)
reverse[permutation2[i]] = i;
@for(i, 0, DIM, x_shape.push_back(x->shape[DIM-1-@i@@]);)
void CuttTransposeOp::run() {
auto* __restrict__ xp = x->mem_ptr;
auto* __restrict__ yp = y->mem_ptr;
StackVector<int> x_shape;
StackVector<int> new_shape, new_axes, trans, reverse;
int dim = x->shape.size();
for (int i=0; i<dim; i++) {
trans[i] = new_shape.size();
if (x->shape[i] != 1)
new_shape.push_back(x->shape[i]);
}
for (int i = 0; i < dim; ++i) {
if (x->shape[axes[i]] != 1) {
new_axes.push_back(trans[axes[i]]);
}
}
dim = new_shape.size();
for (int i=0; i<dim; i++)
reverse[i] = dim-1-new_axes[dim-1-i];
for (int i=0; i<dim; i++)
x_shape[i] = new_shape[dim-1-i];
if (dim == 1) {
checkCudaErrors(cudaMemcpyAsync(yp, xp, x->size, cudaMemcpyDefault, 0));
return;
}
jk.clear();
jk << @DIM << ",";
for (uint i=0; i<@DIM; i++) jk << x_shape[i] << ",";
for (uint i=0; i<@DIM; i++) jk << reverse[i] << ",";
jk << sizeof(Tx) << ".";
jk << dim << ',';
for (int i=0; i<dim; i++) jk << x_shape[i] << ',';
for (int i=0; i<dim; i++) jk << reverse[i] << ',';
jk << x->dtype().dsize() << '.';
auto iter = cutt_plan_cache.find(jk.to_string());
LOGvvv << "Run cutt_transpose with key:" << jk.to_string();
if (iter!=cutt_plan_cache.end()){
cuttExecute(iter->second, xp, yp);
} else {
cuttHandle plan;
cuttPlan(&plan, @DIM, x_shape.data(), reverse.data(), sizeof(Tx), 0);
cuttPlan(&plan, dim, x_shape.data(), reverse.data(), x->dtype().dsize(), 0);
cutt_plan_cache[jk.to_string()] = plan;
cuttExecute(plan, xp, yp);
}
}
#endif // JIT_cuda
#endif // JIT
} // jittor

View File

@ -19,7 +19,7 @@ struct CuttTransposeOp : Op {
const char* name() const override { return "cutt_transpose"; }
VarPtr grad(Var* out, Var* dout, Var* v, int v_index) override;
void infer_shape() override;
DECLARE_jit_run;
void run() override;
};
} // jittor

View File

@ -12,6 +12,35 @@ import numpy as np
import math
from collections.abc import Sequence,Iterable
def __copy__(x):
return x.copy().detach()
jt.Var.__copy__ = __copy__
def __deepcopy__(x,memo):
result = x.copy().detach()
memo[id(x)]=result
return result
jt.Var.__deepcopy__ = __deepcopy__
def __len__(x):
return x.shape[0]
jt.Var.__len__ = __len__
def __iter__(x):
result = []
for i in range(x.shape[0]):
result.append(x[i])
return result.__iter__()
jt.Var.__iter__ = __iter__
def all(x,dim):
return x.all_(dim).bool()
jt.Var.all = all
def any(x,dim):
return x.any_(dim).bool()
jt.Var.any = any
def repeat(x, *shape):
r'''
@ -47,10 +76,24 @@ def repeat(x, *shape):
x = x.broadcast(x_shape)
elif len_x_shape > len_shape:
rep_shape = (len_x_shape - len_shape) * [1] + shape
reshape_shape = []
broadcast_shape = []
for x_s,r_s in zip(x_shape,rep_shape):
reshape_shape.append(1)
reshape_shape.append(x_s)
broadcast_shape.append(r_s)
broadcast_shape.append(1)
x = x.reshape(reshape_shape)
x = x.broadcast(broadcast_shape)
tar_shape = (np.array(x_shape) * np.array(rep_shape)).tolist()
dims = []
for i in range(len(tar_shape)): dims.append(f"i{i}%{x_shape[i]}")
return x.reindex(tar_shape, dims)
x = x.reshape(tar_shape)
return x
jt.Var.repeat = repeat
def chunk(x, chunks, dim=0):
@ -326,9 +369,8 @@ def unique(x):
'''
x = x.reshape(-1)
_,x = jt.argsort(x)
index2 = [i for i in range(1,x.shape[0])]
index1 = [i for i in range(x.shape[0]-1)]
y = x[1:][x[index2] != x[index1]]
index,= jt.index((x.shape[0],))
y = x[1:][x[index[1:]] != x[index[:-1]]]
x = jt.contrib.concat([x[:1],y],dim=0)
return x
@ -401,12 +443,6 @@ def log2(x):
jt.Var.log2 = log2
def item(x):
assert x.ndim==1 and x.shape[0]==1
return x.numpy().item()
jt.Var.item = item
def meshgrid(*tensors):
r'''
Take N tensors, each of which can be 1-dimensional vector, and create N n-dimensional grids,

View File

@ -264,17 +264,29 @@ class L1Loss(Module):
def execute(self, output, target):
return l1_loss(output, target)
class BCEWithLogitsLoss(Module):
def __init__(self, weight=None, size_average=True):
self.sigmoid = Sigmoid()
self.bce = BCELoss(weight, size_average)
def execute(self, output, target):
output = self.sigmoid(output)
output = self.bce(output, target)
return output
def binary_cross_entropy_with_logits(output, target, weight=None, pos_weight=None, size_average=True):
max_val = jt.clamp(-output,min_v=0)
if pos_weight is not None:
log_weight = (pos_weight-1)*target + 1
loss = (1-target)*output+(log_weight*(((-max_val).exp()+(-output - max_val).exp()).log()+max_val))
else:
loss = (1-target)*output+max_val+((-max_val).exp()+(-output -max_val).exp()).log()
if weight is not None:
loss *=weight
def binary_cross_entropy_with_logits(input, target, weight=None, size_average=True):
return BCEWithLogitsLoss(weight, size_average)(input, target)
if size_average:
return loss.mean()
else:
return loss.sum()
class BCEWithLogitsLoss(Module):
def __init__(self, weight=None, pos_weight=None, size_average=True):
self.pos_weight = pos_weight
self.weight = weight
self.size_average = size_average
def execute(self, output, target):
return binary_cross_entropy_with_logits(output,target,self.weight,self.pos_weight,self.size_average)
def softmax(x, dim = None):
if dim is None:

View File

@ -210,3 +210,64 @@ class Adam(Optimizer):
v.update(b1 * v + (1-b1) * g * g)
step_size = lr * jt.sqrt(1-b1**n) / (1-b0 ** n)
p.update(p - m * step_size / (jt.sqrt(v) + eps))
class LRScheduler:
def __init__(self,optimizer, last_epoch=-1):
assert isinstance(optimizer,Optimizer)
self.optimizer = optimizer
if last_epoch==-1:
for gp in optimizer.param_groups:
gp.setdefault('initial_lr',gp.get('lr',optimizer.lr))
else:
for gp in optimizer.param_groups:
assert 'initial_lr' in gp
self.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
self.last_epoch = last_epoch
self.optimizer._step_count = 0
self._step_count = 0
self.step()
def get_lr(self):
raise NotImplementedError
def get_last_lr(self):
return self._last_lr
def step(self,epoch=None):
self._step_count += 1
if epoch is None:
self.last_epoch += 1
values = self.get_lr()
else:
self.last_epoch = epoch
values = self.get_lr()
for i, data in enumerate(zip(self.optimizer.param_groups, values)):
param_group, lr = data
param_group['lr'] = lr
self._last_lr = [group['lr'] for group in self.optimizer.param_groups]
class LambdaLR(LRScheduler):
def __init__(self, optimizer, lr_lambda, last_epoch=-1):
if not isinstance(lr_lambda, list) and not isinstance(lr_lambda, tuple):
self.lr_lambdas = [lr_lambda] * len(optimizer.param_groups)
else:
if len(lr_lambda) != len(optimizer.param_groups):
raise ValueError("Expected {} lr_lambdas, but got {}".format(len(optimizer.param_groups), len(lr_lambda)))
self.lr_lambdas = list(lr_lambda)
super(LambdaLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
return [base_lr * lmbda(self.last_epoch)
for lmbda, base_lr in zip(self.lr_lambdas, self.base_lrs)]

View File

@ -30,7 +30,7 @@ class TestCuttTransposeOp(unittest.TestCase):
for perm in perms:
with jt.log_capture_scope(
log_silent=1,
log_v=0, log_vprefix="op.cc=100"
log_v=0, log_vprefix="cutt=100"
) as raw_log:
if perm:
x = np.transpose(a, perm)
@ -39,7 +39,7 @@ class TestCuttTransposeOp(unittest.TestCase):
x = np.transpose(a)
y = jt.transpose(a).data
self.assertEqual(x.shape, y.shape)
logs = find_log_with_re(raw_log, "(Jit op key (not )?found: " + "cutt_transpose" + ".*)")
logs = find_log_with_re(raw_log, "(Run cutt_transpose with key.*)")
if perm is None:
continue
last = -1
@ -53,7 +53,7 @@ class TestCuttTransposeOp(unittest.TestCase):
last = perm[i]
if not in_order:
assert len(logs)==1
assert (x==y).all(), f"\n{x}\n{y}"
assert (x==y).all(), f"\n{x}\n{y}\n{perm}\n{a.shape}"
ia = [gen_data([5, 7]), gen_data([2,2,2]), gen_data([2,3,4,5]), gen_data([5,3]), gen_data([3,1,5,3,1])]
for a in ia: check(a)

View File

@ -177,7 +177,8 @@ vector<VarPtr> grad(Var* loss, vector<Var*> targets) {
Var* dout = grads[id];
trace_grad_op = op;
VarPtr dvar = make_grad(op, out, dout, var, index);
if (dvar && dvar->num>=0 && var->num)
if (dvar && dvar->num>=0 && var->num>0)
// var->num == 0 represents a any match var
ASSERT(dvar->num==var->num && dvar->shape.size()==var->shape.size())
<< "dvar" << dvar << "var" << var;
if (!grad)

View File

@ -17,6 +17,7 @@ struct StackVector {
inline T& front() { return a[0]; }
inline T& back() { return a[n-1]; }
inline int size() { return n;}
inline T* data() { return a;}
inline StackVector(int n=0) : n(n) {}
struct Iter {

View File

@ -11,6 +11,7 @@
#ifdef HAS_CUDA
#include <cuda_runtime.h>
#include <helper_cuda.h>
#include "misc/cuda_flags.h"
#endif
namespace jittor {
@ -36,14 +37,14 @@ void CopyOp::run() {
auto size = x->size;
auto x_ptr = x->mem_ptr;
auto y_ptr = outputs().front()->mem_ptr;
if (flags.get(NodeFlags::_cpu)) {
#ifdef HAS_CUDA
if (flags.get(NodeFlags::_cuda)) {
checkCudaErrors(cudaMemcpyAsync(y_ptr, x_ptr, size, cudaMemcpyDefault, 0));
} else
#endif
{
std::memcpy(y_ptr, x_ptr, size);
}
#ifdef HAS_CUDA
else {
checkCudaErrors(cudaMemcpyAsync(y_ptr, x_ptr, size, cudaMemcpyDefault, 0));
}
#endif
}

View File

@ -34,9 +34,9 @@ unordered_set<string> reduce_ops = {
"add",
// @pybind(prod, product, reduce_multiply)
"multiply",
// @pybind(reduce_logical_and, all)
// @pybind(reduce_logical_and, all_)
"logical_and",
// @pybind(reduce_logical_or, any)
// @pybind(reduce_logical_or, any_)
"logical_or",
"logical_xor",
"bitwise_and",
@ -65,7 +65,8 @@ ReduceOp::ReduceOp(Var* x, NanoString op, NanoVector dims, bool keepdims)
reduce_mask |= 1<<dim;
}
}
if (x->dtype() == ns_bool && ns == ns_add)
// if (x->dtype() == ns_bool && ns == ns_add)
if (x->dtype() == ns_bool)
y = create_output(nullptr, ns_int32);
else
y = create_output(nullptr, binary_dtype_infer(ns, x, x));

View File

@ -69,7 +69,7 @@ void SetitemOp::infer_shape() {
for (int i=0; i<data_dim; i++) {
int j = i - data_dim + out_shape.size();
if (!(data_shape[i]==1 && out_shape[j]!=-1)) {
CHECK(data_shape[i]<0 || data_shape[i]==out_shape[j])
CHECK(data_shape[i]<0 || out_shape[j]<0 || data_shape[i]==out_shape[j])
<< "Data shape not match" << data_shape << out_shape;
bmask |= 1<<j;
}

View File

@ -40,38 +40,8 @@ TransposeOp::TransposeOp(Var* x, NanoVector axes_) : x(x), axes(axes_) {
.get_constructor<VarPtr, Var*, NanoVector>();
}
if (cutt_transpose) {
bool need_reshape = false;
int dims = x->shape.size();
vector<int64> in_axes;
vector<int64> in_shape;
vector<int64> out_shape;
vector<int64> trans;
int cnt = 0;
for (int i = 0; i < dims; ++i) {
if (x->shape[i] == 1) {
need_reshape = true;
trans.push_back(-1);
} else {
trans.push_back(cnt);
cnt += 1;
in_shape.push_back(x->shape[i]);
}
out_shape.push_back(x->shape[axes[i]]);
}
for (int i = 0; i < dims; ++i) {
if (x->shape[axes[i]] != 1) {
in_axes.push_back(trans[axes[i]]);
}
}
if (need_reshape) {
auto x1 = make_reshape(x, NanoVector(in_shape));
auto x2 = cutt_transpose(x1, in_axes);
auto x3 = make_reshape(x2, NanoVector(out_shape));
forward(x3);
} else {
auto var = cutt_transpose(x, axes);
forward(var);
}
auto var = cutt_transpose(x, axes);
forward(var);
return;
}
}

View File

@ -164,6 +164,19 @@ static vector<Stack> get_stack_info() {
(int)PyFrame_GetLineNumber(prev_f)});
}
}
if (stacks.size() == 0) {
auto m = std::min(3,n);
for (int i=0; i<m; i++) {
auto f = frames[n-m+i];
auto s = to_string(f->f_code->co_filename);
auto num = (int)PyFrame_GetLineNumber(f);
stacks.emplace_back(Stack{
s+":"+S(num),
"",
s,
num});
}
}
return stacks;
}

View File

@ -23,7 +23,7 @@ static void push_py_object_pickle(RingBuffer* rb, PyObject* obj, uint64& __restr
ASSERT(0 == PyBytes_AsStringAndSize(ret.obj, &s, &size));
rb->push_t<int64>(size, offset);
rb->push(size, offset);
LOGir << string(rb->get_ptr(size, offset), size);
// LOGir << string(rb->get_ptr(size, offset), size);
std::memcpy(rb->get_ptr(size, offset), s, size);
return;
}