mirror of https://github.com/Jittor/Jittor
delete batchnorm1d
This commit is contained in:
parent
856db28b00
commit
dd58aace62
|
@ -285,40 +285,6 @@ class BatchNorm(Module):
|
|||
b = self.bias.broadcast(x, [0,2,3])
|
||||
return norm_x * w + b
|
||||
|
||||
class BatchNorm1d(Module):
|
||||
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=None, is_train=True, sync=True):
|
||||
assert affine == None
|
||||
self.sync = sync
|
||||
self.num_features = num_features
|
||||
self.is_train = is_train
|
||||
self.eps = eps
|
||||
self.momentum = momentum
|
||||
self.weight = init.constant((num_features,), "float32", 1.0)
|
||||
self.bias = init.constant((num_features,), "float32", 0.0)
|
||||
self.running_mean = init.constant((num_features,), "float32", 0.0).stop_grad()
|
||||
self.running_var = init.constant((num_features,), "float32", 1.0).stop_grad()
|
||||
|
||||
def execute(self, x):
|
||||
if self.is_train:
|
||||
xmean = jt.mean(x, dims=[0], keepdims=1)
|
||||
x2mean = jt.mean(x*x, dims=[0], keepdims=1)
|
||||
|
||||
if self.sync and jt.mpi:
|
||||
xmean = xmean.mpi_all_reduce("mean")
|
||||
x2mean = x2mean.mpi_all_reduce("mean")
|
||||
|
||||
xvar = x2mean-xmean*xmean
|
||||
norm_x = (x-xmean)/jt.sqrt(xvar+self.eps)
|
||||
self.running_mean += (xmean.sum([0])-self.running_mean)*self.momentum
|
||||
self.running_var += (xvar.sum([0])-self.running_var)*self.momentum
|
||||
else:
|
||||
running_mean = self.running_mean.broadcast(x, [0])
|
||||
running_var = self.running_var.broadcast(x, [0])
|
||||
norm_x = (x-running_mean)/jt.sqrt(running_var+self.eps)
|
||||
w = self.weight.broadcast(x, [0])
|
||||
b = self.bias.broadcast(x, [0])
|
||||
return norm_x * w + b
|
||||
|
||||
Relu = jt.make_module(relu)
|
||||
ReLU = Relu
|
||||
Leaky_relu = jt.make_module(leaky_relu, 2)
|
||||
|
|
|
@ -23,11 +23,23 @@ except:
|
|||
tnn = None
|
||||
skip_this_test = True
|
||||
|
||||
def check_equal(arr, j_layer, p_layer, threshold=1e-5):
|
||||
def check_equal(arr, j_layer, p_layer, is_train=True, threshold=1e-5):
|
||||
jittor_arr = jt.array(arr)
|
||||
pytorch_arr = torch.Tensor(arr)
|
||||
if is_train:
|
||||
assert np.allclose(p_layer.running_mean.detach().numpy(), j_layer.running_mean.numpy(), threshold)
|
||||
assert np.allclose(p_layer.running_var.detach().numpy(), j_layer.running_var.numpy(), threshold)
|
||||
else:
|
||||
assert np.allclose(p_layer.layer.running_mean.detach().numpy(), j_layer.running_mean.numpy(), threshold)
|
||||
assert np.allclose(p_layer.layer.running_var.detach().numpy(), j_layer.running_var.numpy(), threshold)
|
||||
jittor_result = j_layer(jittor_arr)
|
||||
pytorch_result = p_layer(pytorch_arr)
|
||||
if is_train:
|
||||
assert np.allclose(p_layer.running_mean.detach().numpy(), j_layer.running_mean.numpy(), threshold)
|
||||
assert np.allclose(p_layer.running_var.detach().numpy(), j_layer.running_var.numpy(), threshold)
|
||||
else:
|
||||
assert np.allclose(p_layer.layer.running_mean.detach().numpy(), j_layer.running_mean.numpy(), threshold)
|
||||
assert np.allclose(p_layer.layer.running_var.detach().numpy(), j_layer.running_var.numpy(), threshold)
|
||||
assert np.allclose(pytorch_result.detach().numpy(), jittor_result.numpy(), threshold)
|
||||
|
||||
@unittest.skipIf(skip_this_test, "No Torch found")
|
||||
|
@ -47,23 +59,8 @@ class TestBatchNorm(unittest.TestCase):
|
|||
return self.layer(x)
|
||||
model = Model()
|
||||
model.eval()
|
||||
check_equal(arr, jnn.BatchNorm(10, is_train=False), model)
|
||||
check_equal(arr, jnn.BatchNorm(10, is_train=False), model, False)
|
||||
|
||||
# ***************************************************************
|
||||
# Test BatchNorm1d Layer
|
||||
# ***************************************************************
|
||||
arr = np.random.randn(16,1000)
|
||||
check_equal(arr, jnn.BatchNorm1d(1000), tnn.BatchNorm1d(1000), 1e-3)
|
||||
|
||||
class Model(tnn.Module):
|
||||
def __init__(self):
|
||||
super(Model, self).__init__()
|
||||
self.layer = tnn.BatchNorm1d(1000)
|
||||
def forward(self, x):
|
||||
return self.layer(x)
|
||||
model = Model()
|
||||
model.eval()
|
||||
check_equal(arr, jnn.BatchNorm1d(1000, is_train=False), model, 1e-3)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in New Issue