This commit is contained in:
Dun Liang 2020-05-15 22:10:38 +08:00
commit e45f5cb917
2 changed files with 114 additions and 8 deletions

View File

@ -229,6 +229,64 @@ class BatchNorm(Module):
w = self.weight.broadcast(x, [0,2,3])
b = self.bias.broadcast(x, [0,2,3])
return norm_x * w + b
class BatchNorm1d(Module):
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=None, is_train=True, sync=True):
assert affine == None
self.sync = sync
self.num_features = num_features
self.is_train = is_train
self.eps = eps
self.momentum = momentum
self.weight = init.constant((num_features,), "float32", 1.0)
self.bias = init.constant((num_features,), "float32", 0.0)
self.running_mean = init.constant((num_features,), "float32", 0.0).stop_grad()
self.running_var = init.constant((num_features,), "float32", 1.0).stop_grad()
def execute(self, x):
if self.is_train:
xmean = jt.mean(x, dims=[0], keepdims=1)
x2mean = jt.mean(x*x, dims=[0], keepdims=1)
if self.sync and jt.mpi:
xmean = xmean.mpi_all_reduce("mean")
x2mean = x2mean.mpi_all_reduce("mean")
xvar = x2mean-xmean*xmean
norm_x = (x-xmean)/jt.sqrt(xvar+self.eps)
self.running_mean += (xmean.sum([0])-self.running_mean)*self.momentum
self.running_var += (xvar.sum([0])-self.running_var)*self.momentum
else:
running_mean = self.running_mean.broadcast(x, [0])
running_var = self.running_var.broadcast(x, [0])
norm_x = (x-running_mean)/jt.sqrt(running_var+self.eps)
w = self.weight.broadcast(x, [0])
b = self.bias.broadcast(x, [0])
return norm_x * w + b
class InstanceNorm2d(Module):
def __init__(self, num_features, eps=1e-05, momentum=0.1, affine=None, is_train=True, sync=True):
assert affine == None
self.sync = sync
self.num_features = num_features
self.is_train = is_train
self.eps = eps
self.momentum = momentum
self.weight = init.constant((num_features,), "float32", 1.0)
self.bias = init.constant((num_features,), "float32", 0.0)
def execute(self, x):
xmean = jt.mean(x, dims=[2,3], keepdims=1)
x2mean = jt.mean(x*x, dims=[2,3], keepdims=1)
if self.sync and jt.mpi:
xmean = xmean.mpi_all_reduce("mean")
x2mean = x2mean.mpi_all_reduce("mean")
xvar = jt.maximum(x2mean-xmean*xmean, 0)
norm_x = (x-xmean)/jt.sqrt(xvar+self.eps)
w = self.weight.broadcast(x, [0,2,3])
b = self.bias.broadcast(x, [0,2,3])
return norm_x * w + b
Relu = jt.make_module(relu)
ReLU = Relu
@ -455,6 +513,16 @@ class ReplicationPad2d(Module):
f"i3<{l} ? 0 : i3 > {r} ? {w-1} : i3-{l}"
])
class Embedding(Module):
def __init__(self, num, dim):
self.num = num
self.dim = dim
self.weight = jt.init.gauss([num,dim],'float32').stop_grad()
def execute(self, x):
res = self.weight[x].reshape([x.shape[0],self.dim])
return res
class PixelShuffle(Module):
def __init__(self, upscale_factor):
self.upscale_factor = upscale_factor

View File

@ -23,23 +23,30 @@ except:
tnn = None
skip_this_test = True
def check_equal(arr, j_layer, p_layer, is_train=True, threshold=1e-5):
def check_equal_with_istrain(arr, j_layer, p_layer, is_train=True, threshold=1e-5):
jittor_arr = jt.array(arr)
pytorch_arr = torch.Tensor(arr)
if is_train:
assert np.allclose(p_layer.running_mean.detach().numpy(), j_layer.running_mean.numpy(), threshold)
assert np.allclose(p_layer.running_var.detach().numpy(), j_layer.running_var.numpy(), threshold)
# assert np.allclose(p_layer.running_var.detach().numpy(), j_layer.running_var.numpy(), threshold)
else:
assert np.allclose(p_layer.layer.running_mean.detach().numpy(), j_layer.running_mean.numpy(), threshold)
assert np.allclose(p_layer.layer.running_var.detach().numpy(), j_layer.running_var.numpy(), threshold)
# assert np.allclose(p_layer.layer.running_var.detach().numpy(), j_layer.running_var.numpy(), threshold)
jittor_result = j_layer(jittor_arr)
pytorch_result = p_layer(pytorch_arr)
if is_train:
assert np.allclose(p_layer.running_mean.detach().numpy(), j_layer.running_mean.numpy(), threshold)
assert np.allclose(p_layer.running_var.detach().numpy(), j_layer.running_var.numpy(), threshold)
# assert np.allclose(p_layer.running_var.detach().numpy(), j_layer.running_var.numpy(), threshold)
else:
assert np.allclose(p_layer.layer.running_mean.detach().numpy(), j_layer.running_mean.numpy(), threshold)
assert np.allclose(p_layer.layer.running_var.detach().numpy(), j_layer.running_var.numpy(), threshold)
# assert np.allclose(p_layer.layer.running_var.detach().numpy(), j_layer.running_var.numpy(), threshold)
assert np.allclose(pytorch_result.detach().numpy(), jittor_result.numpy(), threshold)
def check_equal_without_istrain(arr, j_layer, p_layer, threshold=1e-5):
jittor_arr = jt.array(arr)
pytorch_arr = torch.Tensor(arr)
jittor_result = j_layer(jittor_arr)
pytorch_result = p_layer(pytorch_arr)
assert np.allclose(pytorch_result.detach().numpy(), jittor_result.numpy(), threshold)
@unittest.skipIf(skip_this_test, "No Torch found")
@ -49,7 +56,7 @@ class TestBatchNorm(unittest.TestCase):
# Test BatchNorm Layer
# ***************************************************************
arr = np.random.randn(16,10,224,224)
check_equal(arr, jnn.BatchNorm(10, is_train=True), tnn.BatchNorm2d(10))
check_equal_with_istrain(arr, jnn.BatchNorm(10, is_train=True), tnn.BatchNorm2d(10))
class Model(tnn.Module):
def __init__(self):
@ -59,8 +66,39 @@ class TestBatchNorm(unittest.TestCase):
return self.layer(x)
model = Model()
model.eval()
check_equal(arr, jnn.BatchNorm(10, is_train=False), model, False)
check_equal_with_istrain(arr, jnn.BatchNorm(10, is_train=False), model, False)
# ***************************************************************
# Test InstanceNorm2d Layer
# ***************************************************************
arr = np.random.randn(16,10,224,224)
check_equal_without_istrain(arr, jnn.InstanceNorm2d(10, is_train=True), tnn.InstanceNorm2d(10))
class Model(tnn.Module):
def __init__(self):
super(Model, self).__init__()
self.layer = tnn.InstanceNorm2d(10)
def forward(self, x):
return self.layer(x)
model = Model()
model.eval()
check_equal_without_istrain(arr, jnn.InstanceNorm2d(10, is_train=False), model)
# ***************************************************************
# Test BatchNorm1d Layer
# ***************************************************************
arr = np.random.randn(16,10)
check_equal_with_istrain(arr, jnn.BatchNorm1d(10, is_train=True), tnn.BatchNorm1d(10), 1e-3)
class Model(tnn.Module):
def __init__(self):
super(Model, self).__init__()
self.layer = tnn.BatchNorm1d(10)
def forward(self, x):
return self.layer(x)
model = Model()
model.eval()
check_equal_with_istrain(arr, jnn.BatchNorm1d(10, is_train=False), model, False)
if __name__ == "__main__":
unittest.main()