mirror of https://github.com/Jittor/Jittor
polish readme
This commit is contained in:
parent
38e8706ef5
commit
e94b3dfd61
|
@ -7,7 +7,7 @@
|
|||
Jittor 是一个基于即时编译和元算子的高性能深度学习框架,整个框架在即时编译的同时,还集成了强大的Op编译器和调优器,为您的模型生成定制化的高性能代码。
|
||||
|
||||
|
||||
Jittor前端语言为Python。前端使用了模块化的设计,类似于PyTorch,Keras,后端则使用高性能语言编写,如CUDA,C++。
|
||||
Jittor前端语言为Python。前端使用了模块化的设计,这是目前最主流的深度学习框架接口设计。后端则使用高性能语言编写,如CUDA,C++。
|
||||
|
||||
|
||||
下面的代码演示了如何一步一步使用Python代码,从头对一个双层神经网络建模。
|
||||
|
@ -41,7 +41,7 @@ for i,(x,y) in enumerate(get_data(n)):
|
|||
pred_y = model(x)
|
||||
loss = ((pred_y - y)**2)
|
||||
loss_mean = loss.mean()
|
||||
optim.step (loss_mean)
|
||||
optim.step(loss_mean)
|
||||
print(f"step {i}, loss = {loss_mean.data.sum()}")
|
||||
```
|
||||
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just-in-time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code with specialized for your model.
|
||||
|
||||
|
||||
The front-end language is Python. Module Design is used in the front-end, like PyTorch and Keras. The back-end is implemented py high performance language, such as CUDA,C++.
|
||||
The front-end language is Python. Module Design is used in the front-end, which is the most popular design for deeplearning framework interface. The back-end is implemented by high performance language, such as CUDA,C++.
|
||||
|
||||
|
||||
The following example shows how to model a two-layer neural network step by step and train from scratch In a few lines of Python code.
|
||||
|
@ -41,7 +41,7 @@ for i,(x,y) in enumerate(get_data(n)):
|
|||
pred_y = model(x)
|
||||
loss = ((pred_y - y)**2)
|
||||
loss_mean = loss.mean()
|
||||
optim.step (loss_mean)
|
||||
optim.step(loss_mean)
|
||||
print(f"step {i}, loss = {loss_mean.data.sum()}")
|
||||
```
|
||||
|
||||
|
|
|
@ -9,9 +9,9 @@ Jittor is a high-performance deep learning framework based on JIT compiling and
|
|||
|
||||
Jittor 是一个基于即时编译和元算子的高性能深度学习框架,整个框架在即时编译的同时,还集成了强大的Op编译器和调优器,为您的模型生成定制化的高性能代码。
|
||||
|
||||
The front-end language is Python. Module Design is used in the front-end, like PyTorch and Keras. The back-end is implemented py high performance language, such as CUDA,C++.
|
||||
The front-end language is Python. Module Design is used in the front-end, which is the most popular design for deeplearning framework interface. The back-end is implemented by high performance language, such as CUDA,C++.
|
||||
|
||||
Jittor前端语言为Python。前端使用了模块化的设计,类似于PyTorch,Keras,后端则使用高性能语言编写,如CUDA,C++。
|
||||
Jittor前端语言为Python。前端使用了模块化的设计,这是目前最主流的深度学习框架接口设计。后端则使用高性能语言编写,如CUDA,C++。
|
||||
|
||||
The following example shows how to model a two-layer neural network step by step and train from scratch In a few lines of Python code.
|
||||
|
||||
|
@ -46,7 +46,7 @@ for i,(x,y) in enumerate(get_data(n)):
|
|||
pred_y = model(x)
|
||||
loss = ((pred_y - y)**2)
|
||||
loss_mean = loss.mean()
|
||||
optim.step (loss_mean)
|
||||
optim.step(loss_mean)
|
||||
print(f"step {i}, loss = {loss_mean.data.sum()}")
|
||||
```
|
||||
|
||||
|
|
Loading…
Reference in New Issue