mirror of https://github.com/Jittor/Jittor
test init
This commit is contained in:
parent
fc9b22e796
commit
eea9f8acf6
|
@ -0,0 +1,59 @@
|
|||
# ***************************************************************
|
||||
# Copyright (c) Jittor 2020, Author:
|
||||
# All Rights Reserved.
|
||||
# This file is subject to the terms and conditions defined in
|
||||
# file 'LICENSE.txt', which is part of this source code package.
|
||||
# ***************************************************************
|
||||
import jittor as jt
|
||||
import unittest
|
||||
import numpy as np
|
||||
from jittor import models
|
||||
|
||||
pass_this_test = False
|
||||
try:
|
||||
jt.dirty_fix_pytorch_runtime_error()
|
||||
import torch
|
||||
import torchvision
|
||||
except Exception as e:
|
||||
pass_this_test = True
|
||||
|
||||
def get_error(a, b):
|
||||
return np.abs(a-b) / max(np.abs(a), np.abs(b), 1e-5) , np.abs(a-b)
|
||||
|
||||
def check(jt_mod, torch_mod, rtol=1e-2, atol=1e-5):
|
||||
pa = [ p for p in jt_mod.parameters() if not p.is_stop_grad() ]
|
||||
pb = list(torch_mod.parameters())
|
||||
assert len(pa) == len(pb)
|
||||
error_count = 0
|
||||
for a,b in zip(pa, pb):
|
||||
assert a.shape == list(b.shape), (a.shape, b.shape, a.name())
|
||||
stda, meana = np.std(a.numpy()), np.mean(a.numpy())
|
||||
stdb, meanb = np.std(b.detach().numpy()), np.mean(b.detach().numpy())
|
||||
|
||||
r_err, a_err = get_error(stda, stdb)
|
||||
if r_err > rtol and a_err > atol:
|
||||
error_count += 1
|
||||
print("compare std error", stda, stdb, r_err, a_err, a.name(), a.shape)
|
||||
|
||||
r_err, a_err = get_error(meana, meanb)
|
||||
if r_err > rtol and a_err > atol:
|
||||
error_count += 1
|
||||
print("compare mean error", meana, meanb, r_err, a_err, a.name(), a.shape)
|
||||
assert error_count == 0
|
||||
|
||||
@unittest.skipIf(pass_this_test, f"pass init check, no torch found")
|
||||
class TestInit(unittest.TestCase):
|
||||
@classmethod
|
||||
def setUpClass(self):
|
||||
jt.seed(0)
|
||||
np.random.seed(0)
|
||||
torch.manual_seed(0)
|
||||
|
||||
def test_conv(self):
|
||||
check(jt.nn.Conv(64, 256, 3), torch.nn.Conv2d(64, 256, 3))
|
||||
|
||||
def test_resnet(self):
|
||||
check(models.resnet152(), torchvision.models.resnet152(), rtol=2e-2)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in New Issue