polish readme

This commit is contained in:
Dun Liang 2021-09-30 15:20:28 +08:00
parent 0136d24d83
commit f43edfb665
4 changed files with 37 additions and 22 deletions

View File

@ -112,21 +112,23 @@ We provide some jupyter notebooks to help you quick start with Jittor.
Jittor框架对环境要求如下:
* 操作系统: **Linux**(e.g. Ubuntu/CentOS/Arch), **macOS**x86_64或 **Windows Subsystem of LinuxWSL**
Jittor 支持**Linux**(e.g. Ubuntu/CentOS/Arch), **macOS**,**Windows** 其中**Linux**和**macOS**的依赖如下:
* Python版本 >= 3.7
* C++编译器 (需要下列至少一个)
- g++ >=5.4.0
- clang >=8.0
- g++ >=5.4.0 for linux
- clang >=8.0 for mac
* GPU 编译器可选nvcc >=10.0
* GPU 加速库可选cudnn-dev (cudnn开发版, 推荐使用tar安装方法[参考链接](https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-tar))
**Windows**对环境的要求为:
* Python版本 >= 3.8
* x86_64处理器
* Windows 10及以上。
如果您不希望手动配置环境,我们推荐使用 Docker 进行安装。
除此之外,您还可以使用 pip 安装和手动安装。
注意1目前Jittor通过WSL的方式在Windows操作系统上运行WSL的安装方法请参考[微软官网](https://docs.microsoft.com/en-us/windows/wsl/install-win10)WSL版本目前尚不支持CUDA。
注意2macOS 用户需要安装额外依赖,请参考 [macOS 安装](#macOS-安装)。
注意1macOS 用户需要安装额外依赖,请参考 [macOS 安装](#macOS-安装)。
Jittor 提供了三种安装方法dockerpip和手动安装
@ -142,10 +144,7 @@ Jittor environment requirements:
* GPU library: cudnn-dev (recommend tar file installation, [reference link](https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-tar))
Note#1: Currently Jittor runs on the Windows operating system through WSL. For the installation method of WSL, please refer to [Microsoft official website](https://docs.microsoft.com/en-us/windows/wsl/install-win10). WSL does not yet support CUDA.
Note#2: macOS users have to install additional dependencies, see [macOS install](#macOS-install).
Note#1: macOS users have to install additional dependencies, see [macOS install](#macOS-install).
Jittor offers three ways to install: docker, pip, or manual.
@ -212,6 +211,24 @@ python3.7 -m jittor.test.test_example
Currently jittor only supports CPU in macOS.
## Windows安装
Windows 请准备好Python>=3.8,安装方法如下(conda安装需要额外命令)
```bash
# check your python version(>=3.8)
python --version
python -m pip install jittor
# if conda is used
conda install pywin32
```
Windows 下jittor会自动检测显卡并安装对应的 CUDA 请确保您的NVIDIA驱动支持CUDA 10.2 以上您还可以使用如下命令手动为Jittor安装CUDA
```bash
python -m jittor_utils.install_cuda
```
## 手动安装
## manual install

View File

@ -216,23 +216,21 @@ def setup_cuda_extern():
try:
setup_cuda_lib(lib_name, extra_flags=link_cuda_extern)
except Exception as e:
import traceback
line = traceback.format_exc()
LOG.w(f"CUDA found but {lib_name} is not loaded:\n{line}")
msg = f"CUDA found but {lib_name} is not loaded:\n"
if lib_name == "cudnn":
msg = """Develop version of CUDNN not found,
msg += """Develop version of CUDNN not found,
please refer to CUDA offical tar file installation:
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-tar"""
if platform.machine() == "x86_64":
msg += """
if platform.machine() in ["x86_64", "AMD64"]:
msg += f"""
or you can let jittor install cuda and cudnn for you:
>>> python3.{sys.version_info.minor} -m jittor_utils.install_cuda
"""
LOG.w(msg)
LOG.f(msg)
def setup_cuda_lib(lib_name, link=True, extra_flags=""):
arch_key = "x86_64"
if platform.machine() != "x86_64":
if platform.machine() not in ["x86_64", "AMD64"]:
arch_key = "aarch64"
globals()[lib_name+"_ops"] = None
globals()[lib_name] = None

View File

@ -953,7 +953,7 @@ if os.path.isfile(ex_python_path):
# if jtcuda is already installed
nvcc_path = None
if install_cuda.has_installation():
if install_cuda.has_installation() or os.name == 'nt':
nvcc_path = install_cuda.install_cuda()
if nvcc_path:
nvcc_path = try_find_exe(nvcc_path)
@ -984,7 +984,7 @@ def check_clang_latest_supported_cpu():
# cc_flags += " -Wall -Werror -Wno-unknown-pragmas -std=c++14 -fPIC "
cc_flags += " -Wall -Wno-unknown-pragmas -std=c++14 -fPIC "
# 1. Arch/CPU specific optimization
if platform.machine() == "x86_64":
if platform.machine() in ["x86_64", "AMD64"]:
cc_flags += " -march=native "
elif platform.machine() == 'arm64' and platform.system() == "Darwin":
cc_flags += f" -mcpu={check_clang_latest_supported_cpu()} "

View File

@ -76,7 +76,7 @@ for os_name, os_type in os_name_system_dict.items():
env += cname
# use core2 arch, avoid using avx instructions
# TODO: support more archs, such as arm, or use ir(GIMPLE or LLVM)
if platform.machine() == "x86_64":
if platform.machine() in ["x86_64", "AMD64"]:
env += " cc_flags='-march=core2' "
if device == "cpu":
env += " nvcc_path='' "