mirror of https://github.com/Jittor/Jittor
206 lines
7.5 KiB
Python
206 lines
7.5 KiB
Python
# ***************************************************************
|
|
# Copyright (c) 2023 Jittor. All Rights Reserved.
|
|
# Maintainers:
|
|
# Guowei Yang <471184555@qq.com>
|
|
# Dun Liang <randonlang@gmail.com>.
|
|
#
|
|
#
|
|
# This file is subject to the terms and conditions defined in
|
|
# file 'LICENSE.txt', which is part of this source code package.
|
|
# ***************************************************************
|
|
|
|
import jittor as jt
|
|
from jittor.optim import Optimizer
|
|
import math
|
|
|
|
class ReduceLROnPlateau(object):
|
|
def __init__(self, optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=1e-4, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-8):
|
|
assert factor < 1.0, "factor should be < 1.0."
|
|
assert isinstance(optimizer, Optimizer), '{} is not an Optimizer'.format(type(optimizer).__name__)
|
|
assert mode in {'min', 'max'}, 'mode ' + mode + ' is unknown!'
|
|
assert threshold_mode in {'rel', 'abs'}, 'threshold mode ' + threshold_mode + ' is unknown!'
|
|
|
|
if isinstance(min_lr, list) or isinstance(min_lr, tuple):
|
|
assert len(min_lr) == len(optimizer.param_groups), "expected {} min_lrs, got {}".format(len(optimizer.param_groups), len(min_lr))
|
|
self.min_lrs = list(min_lr)
|
|
else:
|
|
self.min_lrs = [min_lr] * len(optimizer.param_groups)
|
|
self.factor = factor
|
|
self.optimizer = optimizer
|
|
self.patience = patience
|
|
self.verbose = verbose
|
|
self.cooldown = cooldown
|
|
self.n_cd = 0
|
|
self.mode = mode
|
|
self.threshold = threshold
|
|
self.threshold_mode = threshold_mode
|
|
self.loss_best = None
|
|
self.n_bad = 0
|
|
self.eps = eps
|
|
self.last_epoch = 0
|
|
self.loss_best = math.inf if mode=="min" else -math.inf
|
|
|
|
def step(self, loss, epoch=None):
|
|
# convert `metrics` to float, in case it's a zero-dim Tensor
|
|
loss_now = float(loss)
|
|
if epoch is None:
|
|
epoch = self.last_epoch + 1
|
|
self.last_epoch = epoch
|
|
|
|
if self.better(loss_now, self.loss_best):
|
|
self.loss_best = loss_now
|
|
self.n_bad = 0
|
|
else:
|
|
self.n_bad += 1
|
|
|
|
if self.n_cd > 0:
|
|
self.n_cd -= 1
|
|
self.n_bad = 0
|
|
|
|
if self.n_bad > self.patience:
|
|
self.update_lr(epoch)
|
|
self.n_cd = self.cooldown
|
|
self.n_bad = 0
|
|
|
|
def update_lr(self, epoch):
|
|
for i, param_group in enumerate(self.optimizer.param_groups):
|
|
old_lr = float(param_group.get("lr", self.optimizer.lr))
|
|
new_lr = max(old_lr * self.factor, self.min_lrs[i])
|
|
if old_lr - new_lr > self.eps:
|
|
if param_group.get("lr")!=None:
|
|
param_group["lr"] = max(param_group["lr"] * self.factor, self.min_lrs[i])
|
|
else:
|
|
self.optimizer.lr = new_lr
|
|
if self.verbose:
|
|
print('Epoch {:5d}: reducing learning rate of group {} from {:.4e} to {:.4e}.'.format(epoch, i, old_lr, new_lr))
|
|
|
|
def better(self, a, b):
|
|
if self.mode == 'min' and self.threshold_mode == 'rel':
|
|
save = 1.0 - self.threshold
|
|
return a < b * save
|
|
elif self.mode == 'min' and self.threshold_mode == 'abs':
|
|
return a < b - self.threshold
|
|
elif self.mode == 'max' and self.threshold_mode == 'rel':
|
|
save = self.threshold + 1.0
|
|
return a > b * save
|
|
else:
|
|
return a > b + self.threshold
|
|
|
|
class CosineAnnealingLR(object):
|
|
def __init__(self, optimizer, T_max, eta_min=0, last_epoch=-1):
|
|
self.T_max = T_max
|
|
self.eta_min = eta_min
|
|
self.optimizer = optimizer
|
|
self.last_epoch = last_epoch
|
|
self.base_lr = optimizer.lr
|
|
self.base_lr_pg = [pg.get("lr") for pg in optimizer.param_groups]
|
|
#TODO set last_epoch is not ready
|
|
|
|
def get_lr(self, base_lr, now_lr):
|
|
if self.last_epoch == 0:
|
|
return base_lr
|
|
if (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
|
|
return (now_lr + (base_lr - self.eta_min) *
|
|
(1 - math.cos(math.pi / self.T_max)) / 2)
|
|
return ((1 + math.cos(math.pi * self.last_epoch / self.T_max)) /
|
|
(1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)) *
|
|
(now_lr - self.eta_min) + self.eta_min)
|
|
|
|
def step(self):
|
|
self.last_epoch += 1
|
|
self.update_lr()
|
|
|
|
def update_lr(self):
|
|
self.optimizer.lr = self.get_lr(self.base_lr, self.optimizer.lr)
|
|
for i, param_group in enumerate(self.optimizer.param_groups):
|
|
if param_group.get("lr") != None:
|
|
param_group["lr"] = self.get_lr(self.base_lr_pg[i], param_group["lr"])
|
|
|
|
|
|
class ExponentialLR(object):
|
|
""" learning rate is multiplied by gamma in each step.
|
|
"""
|
|
def __init__(self, optimizer, gamma, last_epoch=-1):
|
|
self.optimizer = optimizer
|
|
self.gamma = gamma
|
|
self.last_epoch = last_epoch
|
|
self.base_lr = optimizer.lr
|
|
self.base_lr_pg = [pg.get("lr") for pg in optimizer.param_groups]
|
|
|
|
def get_lr(self, base_lr, now_lr):
|
|
if self.last_epoch == 0:
|
|
return base_lr
|
|
return base_lr * self.gamma ** self.last_epoch
|
|
|
|
def step(self):
|
|
self.last_epoch += 1
|
|
self.update_lr()
|
|
|
|
def update_lr(self):
|
|
self.optimizer.lr = self.get_lr(self.base_lr, self.optimizer.lr)
|
|
for i, param_group in enumerate(self.optimizer.param_groups):
|
|
if param_group.get("lr") != None:
|
|
param_group["lr"] = self.get_lr(self.base_lr_pg[i], param_group["lr"])
|
|
|
|
|
|
class StepLR(object):
|
|
def __init__(self, optimizer, step_size, gamma=0.1, last_epoch=-1):
|
|
self.optimizer = optimizer
|
|
self.step_size = step_size
|
|
self.gamma = gamma
|
|
self.last_epoch = last_epoch
|
|
self.cur_epoch = 0
|
|
|
|
def get_gamma(self):
|
|
if self.last_epoch < 0:
|
|
if (self.cur_epoch != 0 and (self.cur_epoch + 1) % self.step_size == 0):
|
|
return self.gamma
|
|
else:
|
|
if (self.cur_epoch + 1 + self.last_epoch) % self.step_size == 0:
|
|
return self.gamma
|
|
return 1.
|
|
|
|
def get_lr(self):
|
|
return self.optimizer.lr
|
|
|
|
def step(self):
|
|
self.update_lr()
|
|
self.cur_epoch += 1
|
|
|
|
def update_lr(self):
|
|
gamma = self.get_gamma()
|
|
if gamma != 1.:
|
|
self.optimizer.lr = self.optimizer.lr * gamma
|
|
for i, param_group in enumerate(self.optimizer.param_groups):
|
|
if param_group.get("lr") != None:
|
|
param_group["lr"] = param_group["lr"] * gamma
|
|
|
|
class MultiStepLR(object):
|
|
def __init__(self, optimizer, milestones=[], gamma=0.1, last_epoch=-1):
|
|
self.optimizer = optimizer
|
|
self.milestones = milestones
|
|
self.gamma = gamma
|
|
self.last_epoch = last_epoch
|
|
#TODO set last_epoch is not ready
|
|
|
|
def get_gamma(self):
|
|
if (self.last_epoch in self.milestones):
|
|
return self.gamma
|
|
return 1.0
|
|
|
|
def get_lr(self):
|
|
now_lr = self.optimizer.lr
|
|
return now_lr * self.get_gamma()
|
|
|
|
def step(self):
|
|
self.last_epoch += 1
|
|
self.update_lr()
|
|
|
|
def update_lr(self):
|
|
gamma = self.get_gamma()
|
|
if gamma != 1.0:
|
|
self.optimizer.lr = self.optimizer.lr * gamma
|
|
for i, param_group in enumerate(self.optimizer.param_groups):
|
|
if param_group.get("lr") != None:
|
|
param_group["lr"] = param_group["lr"] * gamma
|