JittorMirror/python/jittor/einops/_backends.py

255 lines
7.9 KiB
Python

"""
Backends in `einops` are organized to meet the following requirements
- backends are not imported unless those are actually needed, because
- backends may not be installed
- importing all available backends will drive to significant memory footprint
- backends may by present but installed with errors (but never used),
importing may drive to crashes
- backend should be either symbolic or imperative (tensorflow is for both, but that causes problems)
- this determines which methods (from_numpy/to_numpy or create_symbol/eval_symbol) should be defined
- if backend can't (temporarily) provide symbols for shape dimensions, UnknownSize objects are used
"""
import sys
import warnings
__author__ = 'Alex Rogozhnikov'
_backends = {}
_debug_importing = False
def get_backend(tensor) -> 'AbstractBackend':
"""
Takes a correct backend (e.g. numpy backend if tensor is numpy.ndarray) for a tensor.
If needed, imports package and creates backend
"""
for framework_name, backend in _backends.items():
if backend.is_appropriate_type(tensor):
return backend
# Find backend subclasses recursively
backend_subclasses = []
backends = AbstractBackend.__subclasses__()
while backends:
backend = backends.pop()
backends += backend.__subclasses__()
backend_subclasses.append(backend)
for BackendSubclass in backend_subclasses:
if _debug_importing:
print('Testing for subclass of ', BackendSubclass)
if BackendSubclass.framework_name not in _backends:
# check that module was already imported. Otherwise it can't be imported
if BackendSubclass.framework_name in sys.modules:
if _debug_importing:
print('Imported backend for ', BackendSubclass.framework_name)
backend = BackendSubclass()
_backends[backend.framework_name] = backend
if backend.is_appropriate_type(tensor):
return backend
raise RuntimeError('Tensor type unknown to einops {}'.format(type(tensor)))
class AbstractBackend:
""" Base backend class, major part of methods are only for debugging purposes. """
framework_name = None
def is_appropriate_type(self, tensor):
""" helper method should recognize tensors it can handle """
raise NotImplementedError()
def from_numpy(self, x):
raise NotImplementedError("framework doesn't support imperative execution")
def to_numpy(self, x):
raise NotImplementedError("framework doesn't support imperative execution")
def create_symbol(self, shape):
raise NotImplementedError("framework doesn't support symbolic computations")
def eval_symbol(self, symbol, input_dict):
raise NotImplementedError("framework doesn't support symbolic computations")
def arange(self, start, stop):
# supplementary method used only in testing, so should implement CPU version
raise NotImplementedError("framework doesn't implement arange")
def shape(self, x):
"""shape should return a tuple with integers or "shape symbols" (which will evaluate to actual size)"""
return x.shape
def reshape(self, x, shape):
return x.reshape(shape)
def transpose(self, x, axes):
return x.transpose(axes)
def reduce(self, x, operation, axes):
return getattr(x, operation)(axis=axes)
def stack_on_zeroth_dimension(self, tensors: list):
raise NotImplementedError()
def add_axis(self, x, new_position):
raise NotImplementedError()
def add_axes(self, x, n_axes, pos2len):
repeats = [1] * n_axes
for axis_position, axis_length in pos2len.items():
x = self.add_axis(x, axis_position)
repeats[axis_position] = axis_length
return self.tile(x, tuple(repeats))
def tile(self, x, repeats):
"""repeats is a number of """
raise NotImplementedError()
def is_float_type(self, x):
# some backends (torch) can't compute average for non-floating types.
# Decided to drop average for all backends if type is not floating
raise NotImplementedError()
def layers(self):
raise NotImplementedError("backend does not provide layers")
def __repr__(self):
return "<einops backend for {}>".format(self.framework_name)
class UnknownSize:
""" pseudo-symbol for symbolic frameworks which do not provide symbols for shape elements """
def __floordiv__(self, other):
return self
def __eq__(self, other):
return True # we don't know actual size
def __mul__(self, other):
return self
def __rmul__(self, other):
return self
def __hash__(self):
return None.__hash__()
class NumpyBackend(AbstractBackend):
framework_name = 'numpy'
def __init__(self):
import numpy
self.np = numpy
def is_appropriate_type(self, tensor):
return isinstance(tensor, self.np.ndarray)
def from_numpy(self, x):
return x
def to_numpy(self, x):
return x
def arange(self, start, stop):
return self.np.arange(start, stop)
def stack_on_zeroth_dimension(self, tensors: list):
return self.np.stack(tensors)
def tile(self, x, repeats):
return self.np.tile(x, repeats)
def is_float_type(self, x):
return x.dtype in ('float16', 'float32', 'float64', 'float128')
def add_axis(self, x, new_position):
return self.np.expand_dims(x, new_position)
class HashableTuple:
"""Overcomes non-hashability of symbolic elements"""
def __init__(self, elements: tuple):
self.elements = elements
def __iter__(self):
for x in self.elements:
yield x
def __len__(self):
return len(self.elements)
def __getitem__(self, item):
return self.elements[item]
class JittorBackend(AbstractBackend):
framework_name = 'jittor'
def __init__(self):
import jittor
self.jittor = jittor
def is_appropriate_type(self, tensor):
return isinstance(tensor, self.jittor.jittor_core.Var)
def from_numpy(self, x):
variable = self.jittor.array(x)
if self.is_float_type(variable):
# attach grad only to floating types
variable.requires_grad = True
return variable
def to_numpy(self, x):
return x.detach().numpy()
def arange(self, start, stop):
return self.jittor.arange(start, stop, dtype='int64')
def shape(self, x):
return HashableTuple(tuple(x.shape))
def reshape(self, x, shape):
return self.jittor.reshape(x, shape)
# def reduce(self, x, operation, axes):
# return getattr(x, operation)(dim=axes)
def reduce(self, x, operation, reduced_axes):
for axis in sorted(reduced_axes, reverse=True):
if operation == 'min':
x = x.min(dim=axis)
elif operation == 'max':
x = x.max(dim=axis)
elif operation in ['sum', 'mean', 'prod']:
x = getattr(x, operation)(dim=axis)
else:
raise NotImplementedError('Unknown reduction ', operation)
return x
def transpose(self, x, axes):
return x.permute(axes)
def stack_on_zeroth_dimension(self, tensors: list):
return self.jittor.stack(tensors)
def add_axes(self, x, n_axes, pos2len):
repeats = [-1] * n_axes
for axis_position, axis_length in pos2len.items():
x = self.add_axis(x, axis_position)
repeats[axis_position] = axis_length
return x.expand(repeats)
def tile(self, x, repeats):
return x.repeat(repeats)
def add_axis(self, x, new_position):
return self.jittor.unsqueeze(x, new_position)
def is_float_type(self, x):
return x.dtype in ["float16", "float32", "float64"]
def layers(self):
from jittor.einops.layers import jittor
return jittor