mirror of https://github.com/Jittor/Jittor
133 lines
5.3 KiB
Python
133 lines
5.3 KiB
Python
|
|
# ***************************************************************
|
|
# Copyright (c) 2020 Jittor. Authors:
|
|
# Wenyang Zhou <576825820@qq.com>
|
|
# Dun Liang <randonlang@gmail.com>.
|
|
# All Rights Reserved.
|
|
# This file is subject to the terms and conditions defined in
|
|
# file 'LICENSE.txt', which is part of this source code package.
|
|
# ***************************************************************
|
|
import unittest
|
|
import jittor as jt
|
|
import numpy as np
|
|
import jittor.nn as jnn
|
|
|
|
skip_this_test = False
|
|
|
|
try:
|
|
jt.dirty_fix_pytorch_runtime_error()
|
|
import torch
|
|
import torch.nn as tnn
|
|
except:
|
|
torch = None
|
|
tnn = None
|
|
skip_this_test = True
|
|
|
|
def check_equal_with_istrain(arr, j_layer, p_layer, is_train=True, has_running=True, threshold=1e-5):
|
|
jittor_arr = jt.array(arr)
|
|
pytorch_arr = torch.Tensor(arr)
|
|
if has_running:
|
|
if is_train:
|
|
assert np.allclose(p_layer.running_mean.detach().numpy(), j_layer.running_mean.numpy(), threshold)
|
|
else:
|
|
assert np.allclose(p_layer.layer.running_mean.detach().numpy(), j_layer.running_mean.numpy(), threshold)
|
|
jittor_result = j_layer(jittor_arr)
|
|
pytorch_result = p_layer(pytorch_arr)
|
|
if has_running:
|
|
if is_train:
|
|
assert np.allclose(p_layer.running_mean.detach().numpy(), j_layer.running_mean.numpy(), threshold)
|
|
else:
|
|
assert np.allclose(p_layer.layer.running_mean.detach().numpy(), j_layer.running_mean.numpy(), threshold)
|
|
assert np.allclose(pytorch_result.detach().numpy(), jittor_result.numpy(), 1e-2, threshold), \
|
|
( np.abs(pytorch_result.detach().numpy() - jittor_result.numpy()).max() )
|
|
|
|
def check_equal_without_istrain(arr, j_layer, p_layer, threshold=1e-5):
|
|
jittor_arr = jt.array(arr)
|
|
pytorch_arr = torch.Tensor(arr)
|
|
jittor_result = j_layer(jittor_arr)
|
|
pytorch_result = p_layer(pytorch_arr)
|
|
assert np.allclose(pytorch_result.detach().numpy(), jittor_result.numpy(), threshold)
|
|
|
|
@unittest.skipIf(skip_this_test, "No Torch found")
|
|
class TestBatchNorm(unittest.TestCase):
|
|
def test_batchnorm(self):
|
|
# ***************************************************************
|
|
# Test BatchNorm Layer
|
|
# ***************************************************************
|
|
arr = np.random.randn(16,10,224,224)
|
|
check_equal_with_istrain(arr, jnn.BatchNorm(10, is_train=True), tnn.BatchNorm2d(10))
|
|
|
|
class Model(tnn.Module):
|
|
def __init__(self):
|
|
super(Model, self).__init__()
|
|
self.layer = tnn.BatchNorm2d(10)
|
|
def forward(self, x):
|
|
return self.layer(x)
|
|
model = Model()
|
|
model.eval()
|
|
check_equal_with_istrain(arr, jnn.BatchNorm(10, is_train=False), model, False)
|
|
|
|
# ***************************************************************
|
|
# Test InstanceNorm2d Layer
|
|
# ***************************************************************
|
|
arr = np.random.randn(16,10,224,224)
|
|
check_equal_without_istrain(arr, jnn.InstanceNorm2d(10, is_train=True), tnn.InstanceNorm2d(10))
|
|
|
|
class Model(tnn.Module):
|
|
def __init__(self):
|
|
super(Model, self).__init__()
|
|
self.layer = tnn.InstanceNorm2d(10)
|
|
def forward(self, x):
|
|
return self.layer(x)
|
|
model = Model()
|
|
model.eval()
|
|
check_equal_without_istrain(arr, jnn.InstanceNorm2d(10, is_train=False), model)
|
|
|
|
# ***************************************************************
|
|
# Test BatchNorm1d Layer
|
|
# ***************************************************************
|
|
arr = np.random.randn(16,10)
|
|
check_equal_with_istrain(arr, jnn.BatchNorm1d(10, is_train=True), tnn.BatchNorm1d(10), 1e-3)
|
|
|
|
class Model(tnn.Module):
|
|
def __init__(self):
|
|
super(Model, self).__init__()
|
|
self.layer = tnn.BatchNorm1d(10)
|
|
def forward(self, x):
|
|
return self.layer(x)
|
|
model = Model()
|
|
model.eval()
|
|
check_equal_with_istrain(arr, jnn.BatchNorm1d(10, is_train=False), model, False)
|
|
|
|
# ***************************************************************
|
|
# Test GroupNorm Layer
|
|
# ***************************************************************
|
|
arr = np.random.randn(16,10,224,224)
|
|
|
|
class Model(tnn.Module):
|
|
def __init__(self):
|
|
super(Model, self).__init__()
|
|
self.layer = tnn.GroupNorm(2, 10)
|
|
def forward(self, x):
|
|
return self.layer(x)
|
|
model = Model()
|
|
model.eval()
|
|
check_equal_with_istrain(arr, jnn.GroupNorm(2, 10, is_train=False), model, False, False)
|
|
|
|
# ***************************************************************
|
|
# Test LayerNorm Layer
|
|
# ***************************************************************
|
|
arr = np.random.randn(16,10,224,224)
|
|
|
|
class Model(tnn.Module):
|
|
def __init__(self):
|
|
super(Model, self).__init__()
|
|
self.layer = tnn.LayerNorm(224)
|
|
def forward(self, x):
|
|
return self.layer(x)
|
|
model = Model()
|
|
model.eval()
|
|
check_equal_with_istrain(arr, jnn.LayerNorm(224), model, False, False)
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main() |