JittorMirror/python/jittor/optim.py

346 lines
11 KiB
Python

# ***************************************************************
# Copyright (c) 2021 Jittor. All Rights Reserved.
# Maintainers:
# Guowei Yang <471184555@qq.com>
# Guoye Yang <498731903@qq.com>
# Wenyang Zhou <576825820@qq.com>
# Meng-Hao Guo <guomenghao1997@gmail.com>
# Dun Liang <randonlang@gmail.com>.
#
#
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import jittor as jt
import numpy as np
class Optimizer(object):
""" Basic class of Optimizer.
Example::
optimizer = nn.SGD(model.parameters(), lr)
optimizer.step(loss)
"""
def __init__(self, params, lr, param_sync_iter=10000):
self.param_groups = []
self.lr = lr
self.param_sync_iter = param_sync_iter
assert len(params) > 0, "Length of parameters should not be zero"
if not isinstance(params[0], dict):
params = [{'params': params}]
for pg in params:
assert isinstance(pg, dict)
self.param_groups.append(pg)
self.n_step = 0
# __zero_grad is a value for fast determ the grad is zero or not
# so we can omit 0+x
self.__zero_grad = True
def add_param_group(self, group):
self.param_groups.append(group)
@property
def defaults(self):
exclude = set(("defaults", "param_groups", "n_step", "pre_step", "step"))
return { k:v for k, v in self.__dict__.items()
if k[0] != '_' and k not in exclude and not callable(v) }
def zero_grad(self):
self.__zero_grad = True
def pre_step(self, loss):
""" something should be done before step, such as calc gradients, mpi sync, and so on.
Example::
class MyOptimizer(Optimizer):
def step(self, loss):
self.post_step(loss)
...
"""
# clean prev grads
params = []
params_has_grad = []
for pg in self.param_groups:
for p in pg['params']:
params.append(p)
if not p.is_stop_grad():
params_has_grad.append(p)
# get gradient
grads = jt.grad(loss, params_has_grad)
# sync grads and model if in mpi
if jt.in_mpi:
for g in grads:
g.assign(g.mpi_all_reduce("mean"))
if self.n_step % self.param_sync_iter == 0:
for p in params:
p.assign(p.mpi_broadcast())
self.n_step += 1
# set up grads in param_groups
pid = 0
for pg in self.param_groups:
if "grads" not in pg:
pg["grads"] = [ jt.zeros_like(p).stop_grad().stop_fuse() for p in pg['params'] ]
pg_grads = pg["grads"]
for i, p in enumerate(pg['params']):
if not p.is_stop_grad():
# accumulate grad and stop grad of grad
g = grads[pid].stop_grad()
if not self.__zero_grad:
g = g + pg_grads[i]
pg_grads[i].update(g)
pid += 1
self.__zero_grad = False
def backward(self, loss):
'''
optimize.backward(loss) is used for accumulate multiple step,
it can be used as following:
Origin source code ::
n_iter = 10000
batch_size = 100
...
for i in range(n_iter):
...
loss = calc_loss()
optimizer.step(loss)
Accumulation version ::
n_iter = 10000
batch_size = 100
accumulation_steps = 10
n_iter *= accumulation_steps
batch_size //= accumulation_steps
...
for i in range(n_iter):
...
loss = calc_loss()
# if loss is a mean across batch, we need to divide accumulation_steps
optimizer.backward(loss / accumulation_steps)
if (i+1) % accumulation_steps == 0:
optimizer.step()
'''
self.pre_step(loss)
def step(self, loss=None):
if loss is not None:
self.pre_step(loss)
for pg in self.param_groups:
lr = pg.get("lr", self.lr)
for p, g in zip(pg["params"], pg["grads"]):
if p.is_stop_grad(): continue
p.update(p - g * lr)
self.zero_grad()
class SGD(Optimizer):
""" SGD Optimizer.
Example::
optimizer = nn.SGD(model.parameters(), lr, momentum=0.9)
optimizer.step(loss)
"""
def __init__(self, params, lr, momentum=0, weight_decay=0, dampening=0, nesterov=False):
super().__init__(params, lr)
self.momentum = momentum
self.weight_decay = weight_decay
self.dampening = dampening
self.nesterov = nesterov
# initialize required arguments
for pg in self.param_groups:
values = pg["values"] = []
for p in pg["params"]:
values.append(jt.zeros(p.shape, p.dtype).stop_grad())
def add_param_group(self, group):
values = group["values"] = []
for p in group["params"]:
values.append(jt.zeros(p.shape, p.dtype).stop_grad())
self.param_groups.append(group)
def step(self, loss=None):
if loss is not None:
self.pre_step(loss)
for pg in self.param_groups:
# get arguments from each param_groups
lr = pg.get("lr", self.lr)
momentum = pg.get("momentum", self.momentum)
weight_decay = pg.get("weight_decay", self.weight_decay)
dampening = pg.get("dampening", self.dampening)
nesterov = pg.get("nesterov", self.nesterov)
# optimize main body
for p, g, v in zip(pg["params"], pg["grads"], pg["values"]):
if p.is_stop_grad(): continue
dp = p * weight_decay + g
v.update(momentum * v + dp * (1 - dampening))
if nesterov:
p.update(p - (dp + momentum * v) * lr)
else:
p.update(p - v * lr)
self.zero_grad()
class RMSprop(Optimizer):
""" RMSprop Optimizer.
Args:
params(list): parameters of model.
lr(float): learning rate.
eps(float): term added to the denominator to avoid division by zero, default 1e-8.
alpha(float): smoothing constant, default 0.99.
Example:
optimizer = nn.RMSprop(model.parameters(), lr)
optimizer.step(loss)
"""
def __init__(self, params, lr=1e-2, eps=1e-8, alpha=0.99):
super().__init__(params, lr)
self.eps = eps
self.alpha = alpha
# initialize required arguments for each param_groups
for pg in self.param_groups:
values = pg["values"] = []
for p in pg["params"]:
values.append(jt.zeros(p.shape, p.dtype).stop_grad())
def add_param_group(self, group):
values = group["values"] = []
for p in group["params"]:
values.append(jt.zeros(p.shape, p.dtype).stop_grad())
self.param_groups.append(group)
def step(self, loss=None):
if loss is not None:
self.pre_step(loss)
for pg in self.param_groups:
# get arguments from each param_groups
lr = pg.get("lr", self.lr)
eps = pg.get("eps", self.eps)
alpha = pg.get("alpha", self.alpha)
for p, g, v in zip(pg["params"], pg["grads"], pg["values"]):
if p.is_stop_grad(): continue
v.update(alpha * v + (1-alpha) * g * g)
p.update(p - lr * g / (jt.sqrt(v) + eps))
self.zero_grad()
class Adam(Optimizer):
""" Adam Optimizer.
Example::
optimizer = nn.Adam(model.parameters(), lr, eps=1e-8, betas=(0.9, 0.999))
optimizer.step(loss)
"""
def __init__(self, params, lr, eps=1e-8, betas=(0.9, 0.999), weight_decay=0):
super().__init__(params, lr)
self.eps = eps
self.betas = betas
# self.weight_decay = weight_decay
assert weight_decay==0, "weight_decay is not supported yet"
# initialize required arguments for each param_groups
for pg in self.param_groups:
values = pg["values"] = []
m = pg["m"] = []
for p in pg["params"]:
values.append(jt.zeros(p.shape, p.dtype).stop_grad())
m.append(jt.zeros(p.shape, p.dtype).stop_grad())
def add_param_group(self, group):
values = group["values"] = []
m = group["m"] = []
for p in group["params"]:
values.append(jt.zeros(p.shape, p.dtype).stop_grad())
m.append(jt.zeros(p.shape, p.dtype).stop_grad())
self.param_groups.append(group)
def step(self, loss=None):
if loss is not None:
self.pre_step(loss)
n = float(self.n_step)
for pg in self.param_groups:
# get arguments from each param_groups
lr = pg.get("lr", self.lr)
eps = pg.get("eps", self.eps)
b0, b1 = pg.get("betas", self.betas)
for p, g, v, m in zip(pg["params"], pg["grads"], pg["values"], pg["m"]):
if p.is_stop_grad(): continue
m.update(b0 * m + (1-b0) * g)
v.update(b1 * v + (1-b1) * g * g)
step_size = lr * jt.sqrt(1-b1**n) / (1-b0 ** n)
p.update(p - m * step_size / (jt.sqrt(v) + eps))
self.zero_grad()
class LRScheduler:
def __init__(self,optimizer, last_epoch=-1):
assert isinstance(optimizer,Optimizer)
self.optimizer = optimizer
if last_epoch==-1:
for gp in optimizer.param_groups:
gp.setdefault('initial_lr',gp.get('lr',optimizer.lr))
else:
for gp in optimizer.param_groups:
assert 'initial_lr' in gp
self.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
self.last_epoch = last_epoch
self.optimizer._step_count = 0
self._step_count = 0
self.step()
def get_lr(self):
raise NotImplementedError
def get_last_lr(self):
return self._last_lr
def step(self,epoch=None):
self._step_count += 1
if epoch is None:
self.last_epoch += 1
values = self.get_lr()
else:
self.last_epoch = epoch
values = self.get_lr()
for i, data in enumerate(zip(self.optimizer.param_groups, values)):
param_group, lr = data
param_group['lr'] = lr
self._last_lr = [group['lr'] for group in self.optimizer.param_groups]
class LambdaLR(LRScheduler):
def __init__(self, optimizer, lr_lambda, last_epoch=-1):
if not isinstance(lr_lambda, list) and not isinstance(lr_lambda, tuple):
self.lr_lambdas = [lr_lambda] * len(optimizer.param_groups)
else:
if len(lr_lambda) != len(optimizer.param_groups):
raise ValueError("Expected {} lr_lambdas, but got {}".format(len(optimizer.param_groups), len(lr_lambda)))
self.lr_lambdas = list(lr_lambda)
super(LambdaLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
return [base_lr * lmbda(self.last_epoch)
for lmbda, base_lr in zip(self.lr_lambdas, self.base_lrs)]