JittorMirror/python/jittor/models/shufflenetv2.py

116 lines
5.3 KiB
Python

# ***************************************************************
# Copyright (c) 2021 Jittor. All Rights Reserved.
# Maintainers:
# Wenyang Zhou <576825820@qq.com>
# Dun Liang <randonlang@gmail.com>.
#
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
# This model is generated by pytorch converter.
import jittor as jt
from jittor import nn
__all__ = ['ShuffleNetV2', 'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'shufflenet_v2_x1_5', 'shufflenet_v2_x2_0']
def channel_shuffle(x, groups):
(batchsize, num_channels, height, width) = x.data.shape
channels_per_group = (num_channels // groups)
x = jt.reshape(x, [batchsize, groups, channels_per_group, height, width])
x = jt.transpose(x, (0,2,1,3,4))
x = jt.reshape(x, [batchsize, (- 1), height, width])
return x
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride):
super(InvertedResidual, self).__init__()
if (not (1 <= stride <= 3)):
raise ValueError('illegal stride value')
self.stride = stride
branch_features = (oup // 2)
assert ((self.stride != 1) or (inp == (branch_features << 1)))
if (self.stride > 1):
self.branch1 = nn.Sequential(self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1), nn.BatchNorm(inp), nn.Conv(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm(branch_features), nn.Relu())
else:
self.branch1 = nn.Sequential()
self.branch2 = nn.Sequential(nn.Conv((inp if (self.stride > 1) else branch_features), branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm(branch_features), nn.Relu(), self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1), nn.BatchNorm(branch_features), nn.Conv(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm(branch_features), nn.Relu())
@staticmethod
def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
return nn.Conv(i, o, kernel_size, stride, padding, bias=bias, groups=i)
def execute(self, x):
if (self.stride == 1):
x1 = x[:,0:x.shape[1]//2]
x2 = x[:,x.shape[1]//2:x.shape[1]]
out = jt.contrib.concat([x1, self.branch2(x2)], dim=1)
else:
out = jt.contrib.concat([self.branch1(x), self.branch2(x)], dim=1)
out = channel_shuffle(out, 2)
return out
class ShuffleNetV2(nn.Module):
def __init__(self, stages_repeats, stages_out_channels, num_classes=1000, inverted_residual=InvertedResidual):
super(ShuffleNetV2, self).__init__()
if (len(stages_repeats) != 3):
raise ValueError('expected stages_repeats as list of 3 positive ints')
if (len(stages_out_channels) != 5):
raise ValueError('expected stages_out_channels as list of 5 positive ints')
self._stage_out_channels = stages_out_channels
input_channels = 3
output_channels = self._stage_out_channels[0]
self.conv1 = nn.Sequential(nn.Conv(input_channels, output_channels, 3, 2, 1, bias=False), nn.BatchNorm(output_channels), nn.Relu())
input_channels = output_channels
self.maxpool = nn.Pool(kernel_size=3, stride=2, padding=1, op='maximum')
stage_names = ['stage{}'.format(i) for i in [2, 3, 4]]
for (name, repeats, output_channels) in zip(stage_names, stages_repeats, self._stage_out_channels[1:]):
seq = [inverted_residual(input_channels, output_channels, 2)]
for i in range((repeats - 1)):
seq.append(inverted_residual(output_channels, output_channels, 1))
setattr(self, name, nn.Sequential(*seq))
input_channels = output_channels
output_channels = self._stage_out_channels[(- 1)]
self.conv5 = nn.Sequential(nn.Conv(input_channels, output_channels, 1, 1, 0, bias=False), nn.BatchNorm(output_channels), nn.Relu())
self.fc = nn.Linear(output_channels, num_classes)
def _forward_impl(self, x):
x = self.conv1(x)
x = self.maxpool(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.conv5(x)
x = x.mean([2, 3])
x = self.fc(x)
return x
def execute(self, x):
return self._forward_impl(x)
def _shufflenetv2(arch, *args):
model = ShuffleNetV2(*args)
return model
def shufflenet_v2_x0_5(pretrained=False):
model = _shufflenetv2('shufflenetv2_x0.5', [4, 8, 4], [24, 48, 96, 192, 1024])
if pretrained: model.load("jittorhub://shufflenet_v2_x0_5.pkl")
return model
def shufflenet_v2_x1_0(pretrained=False):
model = _shufflenetv2('shufflenetv2_x1.0', [4, 8, 4], [24, 116, 232, 464, 1024])
if pretrained: model.load("jittorhub://shufflenet_v2_x1_0.pkl")
return model
def shufflenet_v2_x1_5(pretrained=False):
model = _shufflenetv2('shufflenetv2_x1.5', [4, 8, 4], [24, 176, 352, 704, 1024])
if pretrained: model.load("jittorhub://shufflenet_v2_x1_5.pkl")
return model
def shufflenet_v2_x2_0(pretrained=False):
model = _shufflenetv2('shufflenetv2_x2.0', [4, 8, 4], [24, 244, 488, 976, 2048])
if pretrained: model.load("jittorhub://shufflenet_v2_x2_0.pkl")
return model