mirror of https://github.com/Jittor/Jittor
96 lines
3.8 KiB
Python
96 lines
3.8 KiB
Python
# ***************************************************************
|
|
# Copyright (c) 2021 Jittor. All Rights Reserved.
|
|
# Maintainers:
|
|
# Wenyang Zhou <576825820@qq.com>
|
|
# Dun Liang <randonlang@gmail.com>.
|
|
#
|
|
# This file is subject to the terms and conditions defined in
|
|
# file 'LICENSE.txt', which is part of this source code package.
|
|
# ***************************************************************
|
|
# This model is generated by pytorch converter.
|
|
import jittor as jt
|
|
from jittor import nn
|
|
__all__ = ['SqueezeNet', 'squeezenet1_0', 'squeezenet1_1']
|
|
|
|
class Fire(nn.Module):
|
|
|
|
def __init__(self, inplanes, squeeze_planes, expand1x1_planes, expand3x3_planes):
|
|
super(Fire, self).__init__()
|
|
self.inplanes = inplanes
|
|
self.squeeze = nn.Conv(inplanes, squeeze_planes, kernel_size=1)
|
|
self.squeeze_activation = nn.Relu()
|
|
self.expand1x1 = nn.Conv(squeeze_planes, expand1x1_planes, kernel_size=1)
|
|
self.expand1x1_activation = nn.Relu()
|
|
self.expand3x3 = nn.Conv(squeeze_planes, expand3x3_planes, kernel_size=3, padding=1)
|
|
self.expand3x3_activation = nn.Relu()
|
|
|
|
def execute(self, x):
|
|
x = self.squeeze_activation(self.squeeze(x))
|
|
return jt.contrib.concat([self.expand1x1_activation(self.expand1x1(x)), self.expand3x3_activation(self.expand3x3(x))], dim=1)
|
|
|
|
class SqueezeNet(nn.Module):
|
|
|
|
def __init__(self, version='1_0', num_classes=1000):
|
|
super(SqueezeNet, self).__init__()
|
|
self.num_classes = num_classes
|
|
if (version == '1_0'):
|
|
self.features = nn.Sequential(
|
|
nn.Conv(3, 96, kernel_size=7, stride=2),
|
|
nn.Relu(),
|
|
nn.Pool(kernel_size=3, stride=2, ceil_mode=True, op='maximum'),
|
|
Fire(96, 16, 64, 64),
|
|
Fire(128, 16, 64, 64),
|
|
Fire(128, 32, 128, 128),
|
|
nn.Pool(kernel_size=3, stride=2, ceil_mode=True, op='maximum'),
|
|
Fire(256, 32, 128, 128),
|
|
Fire(256, 48, 192, 192),
|
|
Fire(384, 48, 192, 192),
|
|
Fire(384, 64, 256, 256),
|
|
nn.Pool(kernel_size=3, stride=2, ceil_mode=True, op='maximum'),
|
|
Fire(512, 64, 256, 256)
|
|
)
|
|
elif (version == '1_1'):
|
|
self.features = nn.Sequential(
|
|
nn.Conv(3, 64, kernel_size=3, stride=2),
|
|
nn.Relu(),
|
|
nn.Pool(kernel_size=3, stride=2, ceil_mode=True, op='maximum'),
|
|
Fire(64, 16, 64, 64),
|
|
Fire(128, 16, 64, 64),
|
|
nn.Pool(kernel_size=3, stride=2, ceil_mode=True, op='maximum'),
|
|
Fire(128, 32, 128, 128),
|
|
Fire(256, 32, 128, 128),
|
|
nn.Pool(kernel_size=3, stride=2, ceil_mode=True, op='maximum'),
|
|
Fire(256, 48, 192, 192),
|
|
Fire(384, 48, 192, 192),
|
|
Fire(384, 64, 256, 256),
|
|
Fire(512, 64, 256, 256)
|
|
)
|
|
else:
|
|
raise ValueError('Unsupported SqueezeNet version {version}:1_0 or 1_1 expected'.format(version=version))
|
|
final_conv = nn.Conv(512, self.num_classes, kernel_size=1)
|
|
self.classifier = nn.Sequential(
|
|
nn.Dropout(p=0.5),
|
|
final_conv,
|
|
nn.Relu(),
|
|
nn.AdaptiveAvgPool2d((1, 1))
|
|
)
|
|
|
|
def execute(self, x):
|
|
x = self.features(x)
|
|
x = self.classifier(x)
|
|
return jt.reshape(x, (x.shape[0], (- 1)))
|
|
|
|
def _squeezenet(version, **kwargs):
|
|
model = SqueezeNet(version, **kwargs)
|
|
return model
|
|
|
|
def squeezenet1_0(pretrained=False, **kwargs):
|
|
model = _squeezenet('1_0', **kwargs)
|
|
if pretrained: model.load("jittorhub://squeezenet1_0.pkl")
|
|
return model
|
|
|
|
def squeezenet1_1(pretrained=False, **kwargs):
|
|
model = _squeezenet('1_1', **kwargs)
|
|
if pretrained: model.load("jittorhub://squeezenet1_1.pkl")
|
|
return model
|