JittorMirror/python/jittor/models/vgg.py

116 lines
3.5 KiB
Python

# ***************************************************************
# Copyright (c) 2021 Jittor. All Rights Reserved.
# Maintainers:
# Guoye Yang <498731903@qq.com>
# Dun Liang <randonlang@gmail.com>.
#
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
# This model is generated by pytorch converter.
import jittor as jt
from jittor import nn
__all__ = [
'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn',
'vgg19_bn', 'vgg19',
]
class VGG(nn.Module):
def __init__(self, features, num_classes=1000, init_weights=True):
super(VGG, self).__init__()
self.features = features
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
def execute(self, x):
x = self.features(x)
x = self.avgpool(x)
x = jt.reshape(x, [x.shape[0],-1])
x = self.classifier(x)
return x
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.Pool(kernel_size=2, stride=2, op="maximum")]
else:
conv2d = nn.Conv(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm(v), nn.ReLU()]
else:
layers += [conv2d, nn.ReLU()]
in_channels = v
return nn.Sequential(*layers)
cfgs = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def _vgg(arch, cfg, batch_norm, **kwargs):
model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
return model
def vgg11(pretrained=False, **kwargs):
model = _vgg('vgg11', 'A', False, **kwargs)
if pretrained: model.load("jittorhub://vgg11.pkl")
return model
def vgg11_bn(pretrained=False, **kwargs):
model = _vgg('vgg11_bn', 'A', True, **kwargs)
if pretrained: model.load("jittorhub://vgg11_bn.pkl")
return model
def vgg13(pretrained=False, **kwargs):
model = _vgg('vgg13', 'B', False, **kwargs)
if pretrained: model.load("jittorhub://vgg13.pkl")
return model
def vgg13_bn(pretrained=False, **kwargs):
model = _vgg('vgg13_bn', 'B', True, **kwargs)
if pretrained: model.load("jittorhub://vgg13_bn.pkl")
return model
def vgg16(pretrained=False, **kwargs):
model = _vgg('vgg16', 'D', False, **kwargs)
if pretrained: model.load("jittorhub://vgg16.pkl")
return model
def vgg16_bn(pretrained=False, **kwargs):
model = _vgg('vgg16_bn', 'D', True, **kwargs)
if pretrained: model.load("jittorhub://vgg16_bn.pkl")
return model
def vgg19(pretrained=False, **kwargs):
model = _vgg('vgg19', 'E', False, **kwargs)
if pretrained: model.load("jittorhub://vgg19.pkl")
return model
def vgg19_bn(pretrained=False, **kwargs):
model = _vgg('vgg19_bn', 'E', True, **kwargs)
if pretrained: model.load("jittorhub://vgg19_bn.pkl")
return model