JittorMirror/python/jittor/test/test_transform.py

977 lines
39 KiB
Python

# ***************************************************************
# Copyright (c) 2021 Jittor.
# All Rights Reserved.
# Maintainers:
# Dun Liang <randonlang@gmail.com>.
#
# Contributors:
# Xin Yao <yaox12@outlook.com>
#
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import unittest
import random
from PIL import Image
import numpy as np
from numpy.testing import assert_array_almost_equal
import jittor as jt
import jittor.transform as transform
try:
from scipy import stats
except ImportError:
stats = None
class Tester(unittest.TestCase):
def test_crop(self):
height = random.randint(10, 32) * 2
width = random.randint(10, 32) * 2
oheight = random.randint(5, (height - 2) / 2) * 2
owidth = random.randint(5, (width - 2) / 2) * 2
img = np.ones([height, width, 3])
oh1 = (height - oheight) // 2
ow1 = (width - owidth) // 2
# imgnarrow = img[oh1:oh1 + oheight, ow1:ow1 + owidth, :]
# imgnarrow.fill(0)
img[oh1:oh1 + oheight, ow1:ow1 + owidth, :] = 0
# img = jt.array(img)
result = transform.Compose([
transform.ToPILImage(),
transform.CenterCrop((oheight, owidth)),
transform.ToTensor(),
])(img)
self.assertEqual(result.sum(), 0,
f"height: {height} width: {width} oheight: {oheight} owdith: {owidth}")
oheight += 1
owidth += 1
result = transform.Compose([
transform.ToPILImage(),
transform.CenterCrop((oheight, owidth)),
transform.ToTensor(),
])(img)
sum1 = result.sum()
# TODO: not pass
# self.assertGreater(sum1, 1,
# f"height: {height} width: {width} oheight: {oheight} owdith: {owidth}")
oheight += 1
owidth += 1
result = transform.Compose([
transform.ToPILImage(),
transform.CenterCrop((oheight, owidth)),
transform.ToTensor(),
])(img)
sum2 = result.sum()
self.assertGreater(sum2, 0,
f"height: {height} width: {width} oheight: {oheight} owdith: {owidth}")
self.assertGreaterEqual(sum2, sum1,
f"height: {height} width: {width} oheight: {oheight} owdith: {owidth}")
def test_resize(self):
height = random.randint(24, 32) * 2
width = random.randint(24, 32) * 2
osize = random.randint(5, 12) * 2
img = jt.ones([height, width, 3])
result = transform.Compose([
transform.ToPILImage(),
transform.Resize(osize),
transform.ToTensor(),
])(img)
self.assertIn(osize, result.shape)
if height < width:
self.assertLessEqual(result.shape[1], result.shape[2])
elif width < height:
self.assertGreaterEqual(result.shape[1], result.shape[2])
result = transform.Compose([
transform.ToPILImage(),
transform.Resize([osize, osize]),
transform.ToTensor(),
])(img)
self.assertIn(osize, result.shape)
self.assertEqual(result.shape[1], osize)
self.assertEqual(result.shape[2], osize)
oheight = random.randint(5, 12) * 2
owidth = random.randint(5, 12) * 2
result = transform.Compose([
transform.ToPILImage(),
transform.Resize((oheight, owidth)),
transform.ToTensor(),
])(img)
self.assertEqual(result.shape[1], oheight)
self.assertEqual(result.shape[2], owidth)
result = transform.Compose([
transform.ToPILImage(),
transform.Resize([oheight, owidth]),
transform.ToTensor(),
])(img)
self.assertEqual(result.shape[1], oheight)
self.assertEqual(result.shape[2], owidth)
def test_random_crop(self):
height = random.randint(10, 32) * 2
width = random.randint(10, 32) * 2
oheight = random.randint(5, (height - 2) / 2) * 2
owidth = random.randint(5, (width - 2) / 2) * 2
img = np.ones((height, width, 3))
result = transform.Compose([
transform.ToPILImage(),
transform.RandomCrop((oheight, owidth)),
transform.ToTensor(),
])(img)
self.assertEqual(result.shape[1], oheight)
self.assertEqual(result.shape[2], owidth)
result = transform.Compose([
transform.ToPILImage(),
transform.RandomCrop((oheight, owidth)),
transform.ToTensor(),
])(img)
self.assertEqual(result.shape[1], oheight)
self.assertEqual(result.shape[2], owidth)
result = transform.Compose([
transform.ToPILImage(),
transform.RandomCrop((height, width)),
transform.ToTensor()
])(img)
self.assertEqual(result.shape[1], height)
self.assertEqual(result.shape[2], width)
self.assertTrue(np.allclose(img, result.transpose(1,2,0)))
with self.assertRaises(AssertionError):
result = transform.Compose([
transform.ToPILImage(),
transform.RandomCrop((height + 1, width + 1)),
transform.ToTensor(),
])(img)
def test_lambda(self):
trans = transform.Lambda(lambda x: x.add(10))
x = jt.random([10])
y = trans(x)
self.assertTrue(np.allclose(y.data, jt.add(x, 10).data))
@unittest.skipIf(stats is None, 'scipy.stats not available')
def test_random_apply(self):
random_state = random.getstate()
random.seed(42)
random_apply_transform = transform.RandomApply(
[
transform.RandomHorizontalFlip(),
transform.RandomVerticalFlip(),
], p=0.4
)
img = transform.ToPILImage()(jt.random((3, 10, 10)))
num_samples = 250
num_applies = 0
for _ in range(num_samples):
out = random_apply_transform(img)
if out != img:
num_applies += 1
p_value = stats.binom_test(num_applies, num_samples, p=0.3)
random.setstate(random_state)
self.assertGreater(p_value, 0.0001)
@unittest.skipIf(stats is None, 'scipy.stats not available')
def test_random_choice(self):
random_state = random.getstate()
random.seed(42)
random_choice_transform = transform.RandomChoice(
[
transform.Resize(15),
transform.Resize(20),
transform.CenterCrop(10)
]
)
img = transform.ToPILImage()(jt.random((25, 25, 3)))
num_samples = 250
num_resize_15 = 0
num_resize_20 = 0
num_crop_10 = 0
for _ in range(num_samples):
out = random_choice_transform(img)
if out.size == (15, 15):
num_resize_15 += 1
elif out.size == (20, 20):
num_resize_20 += 1
elif out.size == (10, 10):
num_crop_10 += 1
p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
self.assertGreater(p_value, 0.0001)
p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
self.assertGreater(p_value, 0.0001)
p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
self.assertGreater(p_value, 0.0001)
random.setstate(random_state)
@unittest.skipIf(stats is None, 'scipy.stats not available')
def test_random_order(self):
random_state = random.getstate()
random.seed(42)
random_order_transform = transform.RandomOrder(
[
transform.Resize(20),
transform.CenterCrop(10)
]
)
img = transform.ToPILImage()(jt.random((3, 25, 25)))
num_samples = 250
num_normal_order = 0
resize_crop_out = transform.CenterCrop(10)(transform.Resize(20)(img))
for _ in range(num_samples):
out = random_order_transform(img)
if out == resize_crop_out:
num_normal_order += 1
p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
random.setstate(random_state)
self.assertGreater(p_value, 0.0001)
def test_to_tensor(self):
test_channels = [1, 3, 4]
height, width = 4, 4
trans = transform.ToTensor()
with self.assertRaises(TypeError):
trans(np.random.rand(1, height, width).tolist())
with self.assertRaises(ValueError):
trans(np.random.rand(height))
trans(np.random.rand(1, 1, height, width))
for channels in test_channels:
input_data = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.float32) / np.float32(255.0)
img = transform.ToPILImage()(input_data)
output = trans(img)
expect = input_data.transpose(2,0,1)
self.assertTrue(np.allclose(expect, output), f"{expect.shape}\n{output.shape}")
ndarray = np.random.randint(low=0, high=255, size=(channels, height, width)).astype(np.uint8)
output = trans(ndarray)
expected_output = ndarray / 255.0
np.testing.assert_allclose(output, expected_output)
ndarray = np.random.rand(channels, height, width).astype(np.float32)
output = trans(ndarray)
expected_output = ndarray
self.assertTrue(np.allclose(output, expected_output))
# separate test for mode '1' PIL images
input_data = np.random.binomial(1, 0.5, size=(height, width, 1)).astype(np.uint8)
img = transform.ToPILImage()(input_data * 255).convert('1')
output = trans(img)
self.assertTrue(np.allclose(input_data[:,:,0], output[0]), f"{input_data.shape}\n{output.shape}")
def test_1_channel_tensor_to_pil_image(self):
to_tensor = transform.ToTensor()
shape = (4, 4, 1)
img_data_float = jt.array(np.random.rand(*shape), dtype='float32')
img_data_byte = jt.array(np.random.randint(0, 255, shape), dtype='uint8')
img_data_short = jt.array(np.random.randint(0, 32767, shape), dtype='int16')
img_data_int = jt.array(np.random.randint(0, 2147483647, shape), dtype='int32')
inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
expected_outputs = [img_data_float.multiply(255).int().float().divide(255).numpy(),
img_data_byte.float().divide(255.0).numpy(),
img_data_short.numpy(),
img_data_int.numpy()]
expected_modes = ['F', 'L', 'I;16', 'I']
for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
for t in [transform.ToPILImage(), transform.ToPILImage(mode=mode)]:
img = t(img_data)
self.assertEqual(img.mode, mode)
np.testing.assert_allclose(expected_output[:,:,0], to_tensor(img)[0], atol=0.01)
# 'F' mode for torch.FloatTensor
img_F_mode = transform.ToPILImage(mode='F')(img_data_float)
self.assertEqual(img_F_mode.mode, 'F')
def test_1_channel_ndarray_to_pil_image(self):
img_data_float = np.random.rand(4, 4, 1).astype(np.float32)
img_data_byte = np.random.randint(0, 255, (4, 4, 1)).astype(np.uint8)
img_data_short = np.random.randint(0, 32767, (4, 4, 1)).astype(np.int16)
img_data_int = np.random.randint(0, 2147483647, (4, 4, 1)).astype(np.int32)
inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
expected_modes = ['F', 'L', 'I;16', 'I']
for img_data, mode in zip(inputs, expected_modes):
for t in [transform.ToPILImage(), transform.ToPILImage(mode=mode)]:
img = t(img_data)
self.assertEqual(img.mode, mode)
self.assertTrue(np.allclose(img_data[:, :, 0], img))
def test_2_channel_ndarray_to_pil_image(self):
def verify_img_data(img_data, mode):
if mode is None:
img = transform.ToPILImage()(img_data)
self.assertEqual(img.mode, 'LA') # default should assume LA
else:
img = transform.ToPILImage(mode=mode)(img_data)
self.assertEqual(img.mode, mode)
split = img.split()
for i in range(2):
self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
img_data = np.random.randint(0, 255, (4, 4, 2)).astype(np.uint8)
for mode in [None, 'LA']:
verify_img_data(img_data, mode)
with self.assertRaises(ValueError):
# should raise if we try a mode for 4 or 1 or 3 channel images
transform.ToPILImage(mode='RGBA')(img_data)
transform.ToPILImage(mode='P')(img_data)
transform.ToPILImage(mode='RGB')(img_data)
def test_2_channel_tensor_to_pil_image(self):
def verify_img_data(img_data, expected_output, mode):
if mode is None:
img = transform.ToPILImage()(img_data)
self.assertEqual(img.mode, 'LA') # default should assume LA
else:
img = transform.ToPILImage(mode=mode)(img_data)
self.assertEqual(img.mode, mode)
split = img.split()
for i in range(2):
self.assertTrue(np.allclose(expected_output[:,:,i], transform.to_tensor(split[i])))
img_data = jt.random((4, 4, 2))
expected_output = img_data.multiply(255).int().float().divide(255)
for mode in [None, 'LA']:
verify_img_data(img_data, expected_output, mode=mode)
with self.assertRaises(ValueError):
# should raise if we try a mode for 4 or 1 or 3 channel images
transform.ToPILImage(mode='RGBA')(img_data)
transform.ToPILImage(mode='P')(img_data)
transform.ToPILImage(mode='RGB')(img_data)
def test_3_channel_tensor_to_pil_image(self):
def verify_img_data(img_data, expected_output, mode):
if mode is None:
img = transform.ToPILImage()(img_data)
self.assertEqual(img.mode, 'RGB') # default should assume RGB
else:
img = transform.ToPILImage(mode=mode)(img_data)
self.assertEqual(img.mode, mode)
split = img.split()
for i in range(3):
self.assertTrue(np.allclose(expected_output[:,:,i], transform.to_tensor(split[i])))
img_data = jt.random((4, 4, 3))
expected_output = img_data.multiply(255).int().float().divide(255)
for mode in [None, 'RGB', 'HSV', 'YCbCr']:
verify_img_data(img_data, expected_output, mode=mode)
with self.assertRaises(ValueError):
# should raise if we try a mode for 4 or 1 or 2 channel images
transform.ToPILImage(mode='RGBA')(img_data)
transform.ToPILImage(mode='P')(img_data)
transform.ToPILImage(mode='LA')(img_data)
with self.assertRaises(ValueError):
transform.ToPILImage()(jt.random((1, 3, 4, 4)))
def test_3_channel_ndarray_to_pil_image(self):
def verify_img_data(img_data, mode):
if mode is None:
img = transform.ToPILImage()(img_data)
self.assertEqual(img.mode, 'RGB') # default should assume RGB
else:
img = transform.ToPILImage(mode=mode)(img_data)
self.assertEqual(img.mode, mode)
split = img.split()
for i in range(3):
self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
img_data = np.random.randint(0, 255, (4, 4, 3)).astype(np.uint8)
for mode in [None, 'RGB', 'HSV', 'YCbCr']:
verify_img_data(img_data, mode)
with self.assertRaises(ValueError):
# should raise if we try a mode for 4 or 1 or 2 channel images
transform.ToPILImage(mode='RGBA')(img_data)
transform.ToPILImage(mode='P')(img_data)
transform.ToPILImage(mode='LA')(img_data)
def test_4_channel_tensor_to_pil_image(self):
def verify_img_data(img_data, expected_output, mode):
if mode is None:
img = transform.ToPILImage()(img_data)
self.assertEqual(img.mode, 'RGBA') # default should assume RGBA
else:
img = transform.ToPILImage(mode=mode)(img_data)
self.assertEqual(img.mode, mode)
split = img.split()
for i in range(4):
self.assertTrue(np.allclose(expected_output[:,:,i], transform.to_tensor(split[i])[0]))
img_data = jt.random((4, 4, 4))
expected_output = img_data.multiply(255).int().float().divide(255)
for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
verify_img_data(img_data, expected_output, mode)
with self.assertRaises(ValueError):
# should raise if we try a mode for 3 or 1 or 2 channel images
transform.ToPILImage(mode='RGB')(img_data)
transform.ToPILImage(mode='P')(img_data)
transform.ToPILImage(mode='LA')(img_data)
def test_4_channel_ndarray_to_pil_image(self):
def verify_img_data(img_data, mode):
if mode is None:
img = transform.ToPILImage()(img_data)
self.assertEqual(img.mode, 'RGBA') # default should assume RGBA
else:
img = transform.ToPILImage(mode=mode)(img_data)
self.assertEqual(img.mode, mode)
split = img.split()
for i in range(4):
self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
img_data = np.random.randint(0, 255, (4, 4, 4)).astype(np.uint8)
for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
verify_img_data(img_data, mode)
with self.assertRaises(ValueError):
# should raise if we try a mode for 3 or 1 or 2 channel images
transform.ToPILImage(mode='RGB')(img_data)
transform.ToPILImage(mode='P')(img_data)
transform.ToPILImage(mode='LA')(img_data)
def test_2d_tensor_to_pil_image(self):
to_tensor = transform.ToTensor()
img_data_float = jt.array(np.random.rand(4, 4), dtype='float32')
img_data_byte = jt.array(np.random.randint(0, 255, (4, 4)), dtype='uint8')
img_data_short = jt.array(np.random.randint(0, 32767, (4, 4)), dtype='int16')
img_data_int = jt.array(np.random.randint(0, 2147483647, (4, 4)), dtype='int32')
inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
expected_outputs = [img_data_float.multiply(255).int().float().divide(255).numpy(),
img_data_byte.float().divide(255.0).numpy(),
img_data_short.numpy(),
img_data_int.numpy()]
expected_modes = ['F', 'L', 'I;16', 'I']
for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
for t in [transform.ToPILImage(), transform.ToPILImage(mode=mode)]:
img = t(img_data)
self.assertEqual(img.mode, mode)
self.assertTrue(np.allclose(expected_output, to_tensor(img), atol=0.01, rtol=0.01))
def test_2d_ndarray_to_pil_image(self):
img_data_float = np.random.rand(4, 4).astype(np.float32)
img_data_byte = np.random.randint(0, 255, (4, 4)).astype(np.uint8)
img_data_short = np.random.randint(0, 32767, (4, 4)).astype(np.int16)
img_data_int = np.random.randint(0, 2147483647, (4, 4)).astype(np.int32)
inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
expected_modes = ['F', 'L', 'I;16', 'I']
for img_data, mode in zip(inputs, expected_modes):
for t in [transform.ToPILImage(), transform.ToPILImage(mode=mode)]:
img = t(img_data)
self.assertEqual(img.mode, mode)
self.assertTrue(np.allclose(img_data, img))
def test_tensor_bad_types_to_pil_image(self):
with self.assertRaises(ValueError):
transform.ToPILImage()(jt.ones((1, 3, 4, 4)))
def test_ndarray_bad_types_to_pil_image(self):
trans = transform.ToPILImage()
with self.assertRaises(TypeError):
trans(np.ones([4, 4, 1], np.int64))
trans(np.ones([4, 4, 1], np.uint16))
trans(np.ones([4, 4, 1], np.uint32))
trans(np.ones([4, 4, 1], np.float64))
with self.assertRaises(ValueError):
transform.ToPILImage()(np.ones([1, 4, 4, 3]))
@unittest.skipIf(stats is None, 'scipy.stats not available')
def test_random_vertical_flip(self):
random_state = random.getstate()
random.seed(42)
img = transform.ToPILImage()(jt.random((3, 10, 10)))
vimg = img.transpose(Image.FLIP_TOP_BOTTOM)
num_samples = 250
num_vertical = 0
for _ in range(num_samples):
out = transform.RandomVerticalFlip()(img)
if out == vimg:
num_vertical += 1
p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
random.setstate(random_state)
self.assertGreater(p_value, 0.0001)
num_samples = 250
num_vertical = 0
for _ in range(num_samples):
out = transform.RandomVerticalFlip(p=0.7)(img)
if out == vimg:
num_vertical += 1
p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
random.setstate(random_state)
self.assertGreater(p_value, 0.0001)
@unittest.skipIf(stats is None, 'scipy.stats not available')
def test_random_horizontal_flip(self):
random_state = random.getstate()
random.seed(42)
img = transform.ToPILImage()(jt.random((3, 10, 10)))
himg = img.transpose(Image.FLIP_LEFT_RIGHT)
num_samples = 250
num_horizontal = 0
for _ in range(num_samples):
out = transform.RandomHorizontalFlip()(img)
if out == himg:
num_horizontal += 1
p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
random.setstate(random_state)
self.assertGreater(p_value, 0.0001)
num_samples = 250
num_horizontal = 0
for _ in range(num_samples):
out = transform.RandomHorizontalFlip(p=0.7)(img)
if out == himg:
num_horizontal += 1
p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
random.setstate(random_state)
self.assertGreater(p_value, 0.0001)
@unittest.skipIf(stats is None, 'scipy.stats is not available')
def test_normalize(self):
def samples_from_standard_normal(tensor):
p_value = stats.kstest(list(tensor.reshape(-1).data), 'norm', args=(0, 1)).pvalue
return p_value > 0.0001
random_state = random.getstate()
random.seed(42)
for channels in [1, 3]:
img = jt.random((channels, 10, 10))
mean = [img[c].mean().item() for c in range(channels)]
std = [img[c].std().item() for c in range(channels)]
normalized = transform.ImageNormalize(mean, std)(img)
self.assertTrue(samples_from_standard_normal(normalized))
random.setstate(random_state)
def test_normalize_different_dtype(self):
for dtype1 in ['float32', 'float64']:
img = jt.random((3, 10, 10), dtype=dtype1)
for dtype2 in ['int64', 'float32', 'float64']:
mean = jt.array([1, 2, 3], dtype=dtype2)
std = jt.array([1, 2, 1], dtype=dtype2)
# checks that it doesn't crash
transform.image_normalize(img, mean, std)
def test_normalize_3d_tensor(self):
jt.seed(28)
n_channels = 3
img_size = 10
mean = jt.random((n_channels,)).data
std = jt.random((n_channels,)).data
img = jt.random((n_channels, img_size, img_size)).data
target = transform.image_normalize(img, mean, std)
mean_unsqueezed = mean.reshape(-1, 1, 1)
std_unsqueezed = std.reshape(-1, 1, 1)
result1 = transform.image_normalize(img, mean_unsqueezed, std_unsqueezed)
result2 = transform.image_normalize(img,
mean_unsqueezed,
std_unsqueezed)
assert_array_almost_equal(target, result1)
assert_array_almost_equal(target, result2)
def test_adjust_brightness(self):
x_shape = [2, 2, 3]
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
x_pil = Image.fromarray(x_np, mode='RGB')
# test 0
y_pil = transform.adjust_brightness(x_pil, 1)
y_np = np.array(y_pil)
self.assertTrue(np.allclose(y_np, x_np))
# test 1
y_pil = transform.adjust_brightness(x_pil, 0.5)
y_np = np.array(y_pil)
y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
self.assertTrue(np.allclose(y_np, y_ans))
# test 2
y_pil = transform.adjust_brightness(x_pil, 2)
y_np = np.array(y_pil)
y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
self.assertTrue(np.allclose(y_np, y_ans))
def test_adjust_contrast(self):
x_shape = [2, 2, 3]
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
x_pil = Image.fromarray(x_np, mode='RGB')
# test 0
y_pil = transform.adjust_contrast(x_pil, 1)
y_np = np.array(y_pil)
self.assertTrue(np.allclose(y_np, x_np))
# test 1
y_pil = transform.adjust_contrast(x_pil, 0.5)
y_np = np.array(y_pil)
y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
self.assertTrue(np.allclose(y_np, y_ans))
# test 2
y_pil = transform.adjust_contrast(x_pil, 2)
y_np = np.array(y_pil)
y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
self.assertTrue(np.allclose(y_np, y_ans))
# @unittest.skipIf(Image.__version__ >= '7', "Temporarily disabled")
def test_adjust_saturation(self):
x_shape = [2, 2, 3]
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
x_pil = Image.fromarray(x_np, mode='RGB')
# test 0
y_pil = transform.adjust_saturation(x_pil, 1)
y_np = np.array(y_pil)
self.assertTrue(np.allclose(y_np, x_np))
# test 1
y_pil = transform.adjust_saturation(x_pil, 0.5)
y_np = np.array(y_pil)
y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 216, 89]
y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
self.assertTrue(np.allclose(y_np, y_ans))
# test 2
y_pil = transform.adjust_saturation(x_pil, 2)
y_np = np.array(y_pil)
y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 3, 255, 0]
y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
self.assertTrue(np.allclose(y_np, y_ans))
def test_adjust_hue(self):
x_shape = [2, 2, 3]
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
x_pil = Image.fromarray(x_np, mode='RGB')
with self.assertRaises(ValueError):
transform.adjust_hue(x_pil, -0.7)
transform.adjust_hue(x_pil, 1)
# test 0: almost same as x_data but not exact.
# probably because hsv <-> rgb floating point ops
y_pil = transform.adjust_hue(x_pil, 0)
y_np = np.array(y_pil)
y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
self.assertTrue(np.allclose(y_np, y_ans))
# test 1
y_pil = transform.adjust_hue(x_pil, 0.25)
y_np = np.array(y_pil)
y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
self.assertTrue(np.allclose(y_np, y_ans))
# test 2
y_pil = transform.adjust_hue(x_pil, -0.25)
y_np = np.array(y_pil)
y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
self.assertTrue(np.allclose(y_np, y_ans))
def test_adjust_gamma(self):
x_shape = [2, 2, 3]
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
x_pil = Image.fromarray(x_np, mode='RGB')
# test 0
y_pil = transform.adjust_gamma(x_pil, 1)
y_np = np.array(y_pil)
self.assertTrue(np.allclose(y_np, x_np))
# test 1
y_pil = transform.adjust_gamma(x_pil, 0.5)
y_np = np.array(y_pil)
y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
self.assertTrue(np.allclose(y_np, y_ans))
# test 2
y_pil = transform.adjust_gamma(x_pil, 2)
y_np = np.array(y_pil)
y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
self.assertTrue(np.allclose(y_np, y_ans))
def test_adjusts_L_mode(self):
x_shape = [2, 2, 3]
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
x_rgb = Image.fromarray(x_np, mode='RGB')
x_l = x_rgb.convert('L')
self.assertEqual(transform.adjust_brightness(x_l, 2).mode, 'L')
self.assertEqual(transform.adjust_saturation(x_l, 2).mode, 'L')
self.assertEqual(transform.adjust_contrast(x_l, 2).mode, 'L')
self.assertEqual(transform.adjust_hue(x_l, 0.4).mode, 'L')
self.assertEqual(transform.adjust_gamma(x_l, 0.5).mode, 'L')
def test_color_jitter(self):
color_jitter = transform.ColorJitter(2, 2, 2, 0.1)
x_shape = [2, 2, 3]
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
x_pil = Image.fromarray(x_np, mode='RGB')
x_pil_2 = x_pil.convert('L')
for i in range(10):
y_pil = color_jitter(x_pil)
self.assertEqual(y_pil.mode, x_pil.mode)
y_pil_2 = color_jitter(x_pil_2)
self.assertEqual(y_pil_2.mode, x_pil_2.mode)
def test_gray(self):
"""Unit tests for grayscale transform"""
x_shape = [2, 2, 3]
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
x_pil = Image.fromarray(x_np, mode='RGB')
x_pil_2 = x_pil.convert('L')
gray_np = np.array(x_pil_2)
# Test Set: Gray an image with desired number of output channels
# Case 1: RGB -> 1 channel grayscale
trans1 = transform.Gray(num_output_channels=1)
gray_pil_1 = trans1(x_pil)
gray_np_1 = np.array(gray_pil_1)
# self.assertEqual(gray_pil_1.mode, 'L', 'mode should be L')
self.assertEqual(gray_np_1.shape[1:], tuple(x_shape[0:2]), 'should be 1 channel')
assert np.allclose(gray_np/255, gray_np_1[0], atol=0.01)
# Case 2: RGB -> 3 channel grayscale
trans2 = transform.Gray(num_output_channels=3)
gray_pil_2 = trans2(x_pil)
gray_np_2 = np.array(gray_pil_2)
# self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
assert np.allclose(gray_np/255, gray_np_2[:, :, 0], atol=0.01)
# Case 3: 1 channel grayscale -> 1 channel grayscale
trans3 = transform.Gray(num_output_channels=1)
gray_pil_3 = trans3(x_pil_2)
gray_np_3 = np.array(gray_pil_3)
# self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
self.assertEqual(gray_np_3.shape[1:], tuple(x_shape[0:2]), 'should be 1 channel')
np.testing.assert_allclose(gray_np/255, gray_np_3[0], atol=0.01)
# Case 4: 1 channel grayscale -> 3 channel grayscale
trans4 = transform.Gray(num_output_channels=3)
gray_pil_4 = trans4(x_pil_2)
gray_np_4 = np.array(gray_pil_4)
# self.assertEqual(gray_pil_4.mode, 'RGB', 'mode should be RGB')
self.assertEqual(gray_np_4.shape, tuple(x_shape), 'should be 3 channel')
np.testing.assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
np.testing.assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
np.testing.assert_allclose(gray_np/255, gray_np_4[:, :, 0], atol=0.01)
@unittest.skipIf(stats is None, 'scipy.stats not available')
def test_random_gray(self):
"""Unit tests for random grayscale transform"""
# Test Set 1: RGB -> 3 channel grayscale
random_state = random.getstate()
random.seed(42)
x_shape = [2, 2, 3]
x_np = np.random.randint(0, 256, x_shape, np.uint8)
x_pil = Image.fromarray(x_np, mode='RGB')
x_pil_2 = x_pil.convert('L')
gray_np = np.array(x_pil_2)
num_samples = 250
num_gray = 0
for _ in range(num_samples):
gray_pil_2 = transform.RandomGray(p=0.5)(x_pil)
gray_np_2 = np.array(gray_pil_2)
if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
np.array_equal(gray_np, gray_np_2[:, :, 0]):
num_gray = num_gray + 1
p_value = stats.binom_test(num_gray, num_samples, p=0.5)
random.setstate(random_state)
self.assertGreater(p_value, 0.0001)
# Test Set 2: grayscale -> 1 channel grayscale
random_state = random.getstate()
random.seed(42)
x_shape = [2, 2, 3]
x_np = np.random.randint(0, 256, x_shape, np.uint8)
x_pil = Image.fromarray(x_np, mode='RGB')
x_pil_2 = x_pil.convert('L')
gray_np = np.array(x_pil_2)
num_samples = 250
num_gray = 0
for _ in range(num_samples):
gray_pil_3 = transform.RandomGray(p=0.5)(x_pil_2)
gray_np_3 = np.array(gray_pil_3)
if np.array_equal(gray_np, gray_np_3):
num_gray = num_gray + 1
p_value = stats.binom_test(num_gray, num_samples, p=1.0) # Note: grayscale is always unchanged
random.setstate(random_state)
self.assertGreater(p_value, 0.0001)
# Test set 3: Explicit tests
x_shape = [2, 2, 3]
x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
x_pil = Image.fromarray(x_np, mode='RGB')
x_pil_2 = x_pil.convert('L')
gray_np = np.array(x_pil_2)
# Case 3a: RGB -> 3 channel grayscale (grayscaled)
trans2 = transform.RandomGray(p=1.0)
gray_pil_2 = trans2(x_pil)
gray_np_2 = np.array(gray_pil_2)
self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])
# Case 3b: RGB -> 3 channel grayscale (unchanged)
trans2 = transform.RandomGray(p=0.0)
gray_pil_2 = trans2(x_pil)
gray_np_2 = np.array(gray_pil_2)
self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
np.testing.assert_equal(x_np, gray_np_2)
# Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
trans3 = transform.RandomGray(p=1.0)
gray_pil_3 = trans3(x_pil_2)
gray_np_3 = np.array(gray_pil_3)
self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
np.testing.assert_equal(gray_np, gray_np_3)
# Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
trans3 = transform.RandomGray(p=0.0)
gray_pil_3 = trans3(x_pil_2)
gray_np_3 = np.array(gray_pil_3)
self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
np.testing.assert_equal(gray_np, gray_np_3)
def test_RandomPerspective(self):
img = jt.random((30,40,3))
result = transform.Compose([
transform.ToPILImage(),
transform.RandomPerspective(p=1),
transform.ToTensor(),
])(img)
def test_RandomResizedCrop(self):
img = jt.random((30,40,3))
result = transform.Compose([
transform.ToPILImage(),
transform.RandomResizedCrop(20),
transform.ToTensor(),
])(img)
def test_FiveCrop(self):
img = jt.random((30,40,3))
result = transform.Compose([
transform.ToPILImage(),
transform.FiveCrop(20),
transform.ToTensor(),
])(img)
def test_TenCrop(self):
img = jt.random((30,40,3))
result = transform.Compose([
transform.ToPILImage(),
transform.TenCrop(20),
transform.ToTensor(),
])(img)
def test_RandomRotation(self):
img = jt.random((30,40,3))
result = transform.Compose([
transform.ToPILImage(),
transform.RandomRotation(20),
transform.ToTensor(),
])(img)
def test_RandomAffine(self):
img = jt.random((30,40,3))
result = transform.Compose([
transform.ToPILImage(),
transform.RandomAffine(20),
transform.ToTensor(),
])(img)
def test_not_pil_image(self):
img = jt.random((30,40,3))
result = transform.Compose([
transform.RandomAffine(20),
transform.ToTensor(),
])(img)
img = jt.random((30,40,3))
result = transform.Compose([
transform.ToPILImage(),
transform.Gray(),
transform.Resize(20),
transform.ToTensor(),
])(img)
if __name__ == '__main__':
unittest.main()