JittorMirror/python/jittor/test/test_loss.py

75 lines
2.8 KiB
Python

# ***************************************************************
# Copyright (c) 2020 Jittor. Authors:
# Dun Liang <randonlang@gmail.com>.
# All Rights Reserved.
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import unittest
import jittor as jt
import os
import numpy as np
import jittor.nn as jnn
from jittor.test.test_log import find_log_with_re
skip_this_test = False
try:
jt.dirty_fix_pytorch_runtime_error()
import torch
import torch.nn as tnn
except:
skip_this_test = True
@unittest.skipIf(skip_this_test, "No Torch found")
class TestLoss(unittest.TestCase):
def test_l1_loss(self):
jt_loss=jnn.L1Loss()
tc_loss=tnn.L1Loss()
output=np.random.randn(10,100).astype(np.float32)
target=np.random.randn(10,100).astype(np.float32)
jt_y=jt_loss(jt.array(output), jt.array(target))
tc_y=tc_loss(torch.from_numpy(output), torch.from_numpy(target))
assert np.allclose(jt_y.numpy(), tc_y.numpy())
def test_mse_loss(self):
jt_loss=jnn.MSELoss()
tc_loss=tnn.MSELoss()
output=np.random.randn(10,100).astype(np.float32)
target=np.random.randn(10,100).astype(np.float32)
jt_y=jt_loss(jt.array(output), jt.array(target))
tc_y=tc_loss(torch.from_numpy(output), torch.from_numpy(target))
assert np.allclose(jt_y.numpy(), tc_y.numpy())
def test_cross_entropy_loss(self):
jt_loss=jnn.CrossEntropyLoss()
tc_loss=tnn.CrossEntropyLoss()
output=np.random.randn(10,10).astype(np.float32)
target=np.random.randint(10, size=(10))
jt_y=jt_loss(jt.array(output), jt.array(target))
tc_y=tc_loss(torch.from_numpy(output), torch.from_numpy(target))
assert np.allclose(jt_y.numpy(), tc_y.numpy())
def test_bce_loss(self):
jt_loss=jnn.BCELoss()
tc_loss=tnn.BCELoss()
jt_sig = jnn.Sigmoid()
tc_sig = tnn.Sigmoid()
output=np.random.randn(100).astype(np.float32)
target=np.random.randint(2, size=(100)).astype(np.float32)
jt_y=jt_loss(jt_sig(jt.array(output)), jt.array(target))
tc_y=tc_loss(tc_sig(torch.from_numpy(output)), torch.from_numpy(target))
assert np.allclose(jt_y.numpy(), tc_y.numpy())
def test_bce_with_logits_loss(self):
jt_loss=jnn.BCEWithLogitsLoss()
tc_loss=tnn.BCEWithLogitsLoss()
output=np.random.randn(100).astype(np.float32)
target=np.random.randint(2, size=(100)).astype(np.float32)
jt_y=jt_loss(jt.array(output), jt.array(target))
tc_y=tc_loss(torch.from_numpy(output), torch.from_numpy(target))
assert np.allclose(jt_y.numpy(), tc_y.numpy())
if __name__ == "__main__":
unittest.main()