JittorMirror/python/jittor/test/test_gamma_distribution.py

43 lines
1.6 KiB
Python

# ***************************************************************
# Copyright (c) 2022 Jittor. All Rights Reserved.
# Maintainers:
# Haoyang Peng <2247838039@qq.com>
# Dun Liang <randonlang@gmail.com>.
#
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import jittor as jt
import numpy as np
import unittest
try:
import torch
from torch.autograd import Variable
has_autograd = True
except:
has_autograd = False
@unittest.skipIf(not has_autograd or not jt.compiler.has_cuda, "No autograd or cuda found.")
class TestDigamma(unittest.TestCase):
def setUp(self):
jt.flags.use_cuda = 1
def tearDown(self):
jt.flags.use_cuda = 0
def test_digamma(self):
for i in range(30):
concentration = np.random.uniform(1, 3)
rate = np.random.uniform(1, 2)
j_gamma = jt.distributions.GammaDistribution(concentration, rate)
t_gamma = torch.distributions.gamma.Gamma(torch.tensor([concentration]), torch.tensor([rate]))
samples = t_gamma.sample((30, i+5))
j_samples = jt.array(samples.detach().numpy())
np.testing.assert_allclose(j_gamma.log_prob(j_samples).data, t_gamma.log_prob(samples).detach().numpy(), rtol=1e-4, atol=1e-6)
samples = j_gamma.sample((30,i+5))
t_samples = torch.tensor(samples.numpy())
np.testing.assert_allclose(j_gamma.log_prob(samples).data, t_gamma.log_prob(t_samples).detach().numpy(), rtol=1e-4, atol=1e-6)
if __name__ == "__main__":
unittest.main()