JittorMirror/python/jittor/notebook/60分钟快速入门Jittor/计图入门教程 0 --- 介绍与安装.ipynb

139 lines
4.9 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 计图入门教程 0 --- 介绍与安装"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"**计图 (Jittor)** 是一个以 Python 为前端语言的深度学习框架,它 \n",
"* 效率高:可作为 NumPyPyTorch 的替代品,可以使用 GPU 等其他加速器进行高效的数据运算。除此之外,计图还拥有多个创新点,旨在大幅提升其运算效率;\n",
"* 易使用:是一个用于实现神经网络的自动微分库,并集成了大量有关深度学习的函数库,方便您快速开展开发任务。\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"**通过本教程,您将**\n",
"* 学习并理解计图中基本类型的一般操作;\n",
"* 了解神经网络的一些基本概念,并学会如何利用计图进行神经网络的训练;\n",
"* 解决一个机器学习的经典实战问题。\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**本教程的适用群体:** \n",
"我们的目标是,只要您会 Python 编程,即可通过本教程学习并掌握如何使用计图进行深度学习的开发。不用担心,本教程几乎对所有的关键代码都加以注释说明。只要您耐心跟着本教程一步步学习,便一定能有所斩获。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"现在,请您开启计图快速入门之旅。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"## 安装\n",
"\n",
"\n",
"Jittor框架对环境要求如下:\n",
"\n",
"\n",
"* 操作系统: **Ubuntu** >= 16.04 或 **Windows Subsystem of LinuxWSL**\n",
"* Python版本 >= 3.7\n",
"* C++编译器 (需要下列至少一个)\n",
" - g++ >=5.4.0\n",
" - clang >=8.0\n",
"* GPU 编译器可选nvcc >=10.0\n",
"* GPU 加速库可选cudnn-dev (cudnn开发版, 推荐使用tar安装方法[参考链接](https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-tar))\n",
"\n",
"如果您不希望手动配置环境,我们推荐使用 Docker 进行安装。\n",
"除此之外,您还可以使用 pip 安装和手动安装。\n",
"\n",
"注意目前Jittor通过WSL的方式在Windows操作系统上运行WSL的安装方法请参考[微软官网](https://docs.microsoft.com/en-us/windows/wsl/install-win10)WSL版本目前尚不支持CUDA。\n",
"\n",
"Jittor 提供了三种安装方法dockerpip和手动安装\n",
"\n",
"\n",
"\n",
"## Docker 安装\n",
"\n",
"我们提供了Docker安装方式免去您配置环境Docker安装方法如下\n",
"\n",
"\n",
"```\n",
"# CPU only(Linux)\n",
"docker run -it --network host jittor/jittor\n",
"# CPU and CUDA(Linux)\n",
"docker run -it --network host --gpus all jittor/jittor-cuda\n",
"# CPU only(Mac and Windows)\n",
"docker run -it -p 8888:8888 jittor/jittor\n",
"# Upgrade jittor docker image\n",
"docker pull jittor/jittor\n",
"docker pull jittor/jittor-cuda\n",
"```\n",
"\n",
"关于Docker安装的详细教程可以参考[Windows/Mac/Linux通过Docker安装计图](https://cg.cs.tsinghua.edu.cn/jittor/tutorial/2020-5-15-00-00-docker/)\n",
"\n",
"## Pip 安装\n",
"\n",
"\n",
"如果您没有准备好环境或者使用的不是Ubuntu操作系统 推荐使用**docker安装** 如果您已经装好编译器和对应版本的Python,我们强烈推荐您使用这种方法\n",
"(如果无法访问github, 可以通过jittor主页下载):\n",
"\n",
"```bash\n",
"sudo apt install python3.7-dev libomp-dev\n",
"python3.7 -m pip install jittor\n",
"# or install from github(latest version)\n",
"# python3.7 -m pip install git+https://github.com/Jittor/jittor.git\n",
"python3.7 -m jittor.test.test_example\n",
"\n",
"# Upgrade jittor from pip\n",
"python3.7 -m pip install jittor -U\n",
"# Upgrade jittor from github\n",
"python3.7 -m pip install git+https://github.com/Jittor/jittor.git -U\n",
"```\n",
"\n",
"如果测试运行通过,恭喜你已经安装完成.\n",
"jittor会自动在路径中寻找合适的编译器, 如果您希望手动指定编译器, 请使用环境变量 `cc_path` 和 `nvcc_path`(可选).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}