JittorMirror/python/jittor/test/test_grad.py

185 lines
5.7 KiB
Python

# ***************************************************************
# Copyright (c) 2021 Jittor. All Rights Reserved.
# Maintainers: Dun Liang <randonlang@gmail.com>.
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import unittest
import jittor as jt
import numpy as np
from .test_core import expect_error
def equal_size(x, y):
return x.dtype == y.dtype and x.shape == y.shape
def ngrad(func, vars, eps):
out = func(vars)
dout = []
for i in range(len(vars)):
pvar = vars[i].astype("float64")
if type(pvar)==np.ndarray and pvar.size>1:
grad = []
var_f = pvar.flatten()
for j in range(len(var_f)):
var = pvar.flatten()
var[j] += eps
vars[i] = var.reshape(pvar.shape)
out2 = func(vars)
grad.append((out2-out)/eps)
dout.append(np.array(grad).reshape(pvar.shape))
else:
vars[i] = vars[i] + eps
out2 = func(vars)
dout.append((out2-out)/eps)
vars[i] = pvar
return out, dout
class TestGrad(unittest.TestCase):
def test_grad(self):
x = jt.array([1.0, 2.0])
y = jt.array([3.0, 4.0])
z = x*y
dx, dy, dz = jt.grad(z, [x,y,z])
assert equal_size(dx, x) and equal_size(dy, y), f"{x} {y} {dx} {dy}"
assert (dy.data == x.data).all(), f"{dy.data} {x.data}"
assert (dx.data == y.data).all(), f"{dx.data} {y.data}"
assert (dz.data == 1).all()
def test_check_float(self):
x = jt.array(1)
y = x*x
expect_error(lambda: jt.grad(y, [x]))
def test_grad2(self):
def test(n):
x = jt.array(2.0)
y = x
for _ in range(n-1): y = y*x
dx, = jt.grad(y, [x])
assert dx.data == n*2**(n-1), f"{dx.data} {x.data}, {y.data}"
test(5)
test(6)
test(7)
test(8)
def test_var_index(self):
x = jt.array(2.0)
y = x-x
dx, = jt.grad(y, [x])
assert dx.data == 0, dx.data
x = jt.array(2.0)
y = x/x
dx, = jt.grad(x, [y])
assert dx.data == 0
def test_random_graph(self):
@jt.flag_scope(auto_convert_64_to_32=0)
def test(num_vars, num_ops, seed):
np.random.seed(seed)
vars = []
for _ in range(num_vars):
vars.append(np.random.rand(1))
def random_func(vars):
np.random.seed(seed+1)
vars = list(vars)
for i in range(num_ops):
v1 = len(vars)-1-np.random.randint(num_vars)
v2 = len(vars)-1-np.random.randint(num_vars)
rop = "+-*/"[np.random.randint(4)]
if (rop == '/' or rop == '-') and v1 is v2:
rop = '+'
vout = eval(f"vars[v1]{rop}vars[v2]")
vars.append(vout)
if type(vars[i]) == jt.Var:
for i in range(len(vars)):
vars[i].name("v"+str(i))
return vout
np_out, np_dout = ngrad(random_func, vars, 1e-7)
jt_vars = [ jt.array(v) for v in vars ]
jt_out = random_func(jt_vars)
assert (np.abs(jt_out.data-np_out) < 1e-5).all(), (jt_out.data, np_out)
jt_dout = jt.grad(jt_out, jt_vars)
jt_dout = [ v.data for v in jt_dout ]
for jt_d, np_d in zip(jt_dout, np_dout):
assert abs(jt_d - np_d) < 1e-3, f"{jt_d} {np_d}"
test(1,1,0)
# test(3,3,1)
test(3,6,0)
test(10,100,2)
test(30,100,4)
test(50,100,6)
def test_top_sort(self):
x = jt.array(2.0)
x.name('x')
y1 = x*x # 2
y1.name('y1')
y2 = x*x # 2
y2.name('y2')
y3 = y1*y2 # 4
y3.name('y3')
y4 = y3*y1 # 6
y4.name('y4')
y5 = y4*y1 # 8
y5.name('y5')
y6 = y5*y1 # 10
y6.name('y6')
vars = [x,y1,y2,y3,y4,y5,y6]
grads = [ g.data for g in jt.grad(y6, vars) ]
dx = grads[0]
assert dx == 10*2**9, f"{grads}"
def test_int_grad(self):
x = jt.array(2.0)
z = x*x*x*x*x
dx, = jt.grad(z, [x])
self.assertEqual(dx.data, 5*2**4)
y1 = jt.int(x)
y2 = jt.float(x)
z = x*x*y1*y1*y2
expect_error(lambda: jt.grad(z, [y1]))
dx, = jt.grad(z, [x])
self.assertEqual(dx.data, 48)
def test_int_enable_grad(self):
a = jt.int([1,2,3])
a.requires_grad = True
a.start_grad()
def test_nth_grad(self):
x = jt.array(2.0)
y = x*x*x*x
dx = jt.grad(y, x)
ddx = jt.grad(dx, x)
dddx = jt.grad(ddx, x)
self.assertEqual(y.data, 2**4)
self.assertEqual(dx.data, 4*2**3)
self.assertEqual(ddx.data, 4*3*2**2)
self.assertEqual(dddx.data, 4*3*2*2**1)
def test_no_grad(self):
a = jt.array(1.0)
with jt.no_grad():
b = a
for i in range(10):
b = b.clone() + 1
assert b.data == 11
jt.clean()
assert jt.liveness_info()["lived_vars"] == 2
def test_requires_grad(self):
a = jt.array(2.0)
assert a.requires_grad == True
a.requires_grad = False
assert a.requires_grad == False
assert jt.grad(a**2, a) == 0
a.requires_grad = True
assert a.requires_grad == True
assert jt.grad(a**2, a) == 4
if __name__ == "__main__":
unittest.main()