JittorMirror/python/jittor/test/test_random_op.py

108 lines
3.5 KiB
Python

# ***************************************************************
# Copyright (c) 2021 Jittor. All Rights Reserved.
# Maintainers:
# Guoye Yang <498731903@qq.com>
# Dun Liang <randonlang@gmail.com>.
#
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import jittor as jt
from jittor import nn, Module
from jittor.models import vgg, resnet
import numpy as np
import sys, os
import random
import math
import unittest
from .test_reorder_tuner import simple_parser
from .test_log import find_log_with_re
skip_this_test = False
try:
jt.dirty_fix_pytorch_runtime_error()
import torch
except:
skip_this_test = True
class TestRandomOp(unittest.TestCase):
@unittest.skipIf(not jt.has_cuda, "Cuda not found")
@jt.flag_scope(use_cuda=1)
def test(self):
jt.set_seed(3)
with jt.log_capture_scope(
log_silent=1,
log_v=0, log_vprefix="op.cc=100"
) as raw_log:
t = jt.random([5,5])
t.data
logs = find_log_with_re(raw_log, "(Jit op key (not )?found: " + "curand_random" + ".*)")
assert len(logs)==1
@unittest.skipIf(not jt.has_cuda, "Cuda not found")
@jt.flag_scope(use_cuda=1)
def test_float64(self):
jt.set_seed(3)
with jt.log_capture_scope(
log_silent=1,
log_v=0, log_vprefix="op.cc=100"
) as raw_log:
t = jt.random([5,5], dtype='float64')
t.data
logs = find_log_with_re(raw_log, "(Jit op key (not )?found: " + "curand_random" + ".*)")
assert len(logs)==1
@unittest.skipIf(skip_this_test, "No Torch Found")
def test_normal(self):
from jittor import init
n = 10000
r = 0.155
a = init.gauss([n], "float32", 1, 3)
data = a.data
assert (np.abs((data<(1-3)).mean() - r) < 0.1)
assert (np.abs((data<(1)).mean() - 0.5) < 0.1)
assert (np.abs((data<(1+3)).mean() - (1-r)) < 0.1)
np_res = np.random.normal(1, 0.1, (100, 100))
jt_res = jt.normal(1., 0.1, (100, 100))
assert (np.abs(np_res.mean() - jt_res.data.mean()) < 0.1)
assert (np.abs(np_res.std() - jt_res.data.std()) < 0.1)
np_res = torch.normal(torch.arange(1., 10000.), 1)
jt_res = jt.normal(jt.arange(1, 10000), 1)
assert (np.abs(np_res.mean() - jt_res.data.mean()) < 0.1)
assert (np.abs(np_res.std() - jt_res.data.std()) < 1)
np_res = np.random.randn(100, 100)
jt_res = jt.randn(100, 100)
assert (np.abs(np_res.mean() - jt_res.data.mean()) < 0.1)
assert (np.abs(np_res.std() - jt_res.data.std()) < 0.1)
np_res = np.random.rand(100, 100)
jt_res = jt.rand(100, 100)
assert (np.abs(np_res.mean() - jt_res.data.mean()) < 0.1)
assert (np.abs(np_res.std() - jt_res.data.std()) < 0.1)
@unittest.skipIf(not jt.has_cuda, "Cuda not found")
@jt.flag_scope(use_cuda=1)
def test_normal_cuda(self):
self.test_normal()
def test_other_rand(self):
a = jt.array([1.0,2.0,3.0])
b = jt.rand_like(a)
c = jt.randn_like(a)
assert b.shape == c.shape
assert b.shape == a.shape
print(b, c)
assert jt.randint(10, 20, (2000,)).min() == 10
assert jt.randint(10, 20, (2000,)).max() == 19
assert jt.randint(10, shape=(2000,)).max() == 9
assert jt.randint_like(a, 10).shape == a.shape
if __name__ == "__main__":
unittest.main()