JittorMirror/python/jittor/models/alexnet.py

54 lines
1.8 KiB
Python

# ***************************************************************
# Copyright (c) 2020 Jittor. Authors:
# Wenyang Zhou <576825820@qq.com>
# Dun Liang <randonlang@gmail.com>.
# All Rights Reserved.
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
# This model is generated by pytorch converter.
import jittor as jt
import jittor.nn as nn
__all__ = ['AlexNet', 'alexnet']
class AlexNet(nn.Module):
def __init__(self, num_classes=1000):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv(3, 64, kernel_size=11, stride=4, padding=2),
nn.Relu(),
nn.Pool(kernel_size=3, stride=2, op='maximum'),
nn.Conv(64, 192, kernel_size=5, padding=2),
nn.Relu(), nn.Pool(kernel_size=3, stride=2, op='maximum'),
nn.Conv(192, 384, kernel_size=3, padding=1),
nn.Relu(),
nn.Conv(384, 256, kernel_size=3, padding=1),
nn.Relu(),
nn.Conv(256, 256, kernel_size=3, padding=1),
nn.Relu(),
nn.Pool(kernel_size=3, stride=2, op='maximum')
)
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(((256 * 6) * 6), 4096),
nn.Relu(),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.Relu(),
nn.Linear(4096, num_classes)
)
def execute(self, x):
x = self.features(x)
x = self.avgpool(x)
x = jt.reshape(x, (x.shape[0], (- 1)))
x = self.classifier(x)
return x
def alexnet(**kwargs):
model = AlexNet(**kwargs)
return model