JittorMirror/python/jittor/models/resnet.py

183 lines
7.1 KiB
Python

# ***************************************************************
# Copyright (c) 2020 Jittor. Authors:
# Guowei Yang <471184555@qq.com>
# Wenyang Zhou <576825820@qq.com>
# Dun Liang <randonlang@gmail.com>.
# All Rights Reserved.
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
# This model is generated by pytorch converter.
import jittor as jt
from jittor import nn
__all__ = ['ResNet', 'Resnet18', 'Resnet34', 'Resnet50', 'Resnet101', 'Resnet152', 'Resnext50_32x4d', 'Resnext101_32x8d', 'Wide_resnet50_2', 'Wide_resnet101_2']
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
return nn.Conv(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None):
super(BasicBlock, self).__init__()
if (norm_layer is None):
norm_layer = nn.BatchNorm
if ((groups != 1) or (base_width != 64)):
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if (dilation > 1):
raise NotImplementedError('Dilation > 1 not supported in BasicBlock')
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.Relu()
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def execute(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if (self.downsample is not None):
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None):
super(Bottleneck, self).__init__()
if (norm_layer is None):
norm_layer = nn.BatchNorm
width = (int((planes * (base_width / 64.0))) * groups)
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, (planes * self.expansion))
self.bn3 = norm_layer((planes * self.expansion))
self.relu = nn.Relu()
self.downsample = downsample
self.stride = stride
def execute(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if (self.downsample is not None):
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None):
super(ResNet, self).__init__()
if (norm_layer is None):
norm_layer = nn.BatchNorm
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if (replace_stride_with_dilation is None):
replace_stride_with_dilation = [False, False, False]
if (len(replace_stride_with_dilation) != 3):
raise ValueError('replace_stride_with_dilation should be None or a 3-element tuple, got {}'.format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.Relu()
self.maxpool = nn.Pool(kernel_size=3, stride=2, padding=1, op='maximum')
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear((512 * block.expansion), num_classes)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if ((stride != 1) or (self.inplanes != (planes * block.expansion))):
downsample = nn.Sequential(conv1x1(self.inplanes, (planes * block.expansion), stride), norm_layer((planes * block.expansion)))
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer))
self.inplanes = (planes * block.expansion)
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer))
return nn.Sequential(*layers)
def _forward_impl(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = jt.reshape(x, (x.shape[0], (- 1)))
x = self.fc(x)
return x
def execute(self, x):
return self._forward_impl(x)
def _resnet(block, layers, **kwargs):
model = ResNet(block, layers, **kwargs)
return model
def Resnet18(**kwargs):
return _resnet(BasicBlock, [2, 2, 2, 2], **kwargs)
def Resnet34(**kwargs):
return _resnet( BasicBlock, [3, 4, 6, 3], **kwargs)
def Resnet50(**kwargs):
return _resnet(Bottleneck, [3, 4, 6, 3], **kwargs)
def Resnet101(**kwargs):
return _resnet(Bottleneck, [3, 4, 23, 3], **kwargs)
def Resnet152(**kwargs):
return _resnet(Bottleneck, [3, 8, 36, 3], **kwargs)
def Resnext50_32x4d(**kwargs):
kwargs['groups'] = 32
kwargs['width_per_group'] = 4
return _resnet(Bottleneck, [3, 4, 6, 3], **kwargs)
def Resnext101_32x8d(**kwargs):
kwargs['groups'] = 32
kwargs['width_per_group'] = 8
return _resnet(Bottleneck, [3, 4, 23, 3], **kwargs)
def Wide_resnet50_2(**kwargs):
kwargs['width_per_group'] = (64 * 2)
return _resnet(Bottleneck, [3, 4, 6, 3], **kwargs)
def Wide_resnet101_2(**kwargs):
kwargs['width_per_group'] = (64 * 2)
return _resnet(Bottleneck, [3, 4, 23, 3], **kwargs)