mirror of https://github.com/Jittor/Jittor
107 lines
4.9 KiB
Python
107 lines
4.9 KiB
Python
|
|
# ***************************************************************
|
|
# Copyright (c) 2020 Jittor. Authors:
|
|
# Wenyang Zhou <576825820@qq.com>
|
|
# Dun Liang <randonlang@gmail.com>.
|
|
# All Rights Reserved.
|
|
# This file is subject to the terms and conditions defined in
|
|
# file 'LICENSE.txt', which is part of this source code package.
|
|
# ***************************************************************
|
|
# This model is generated by pytorch converter.
|
|
import jittor as jt
|
|
from jittor import nn
|
|
|
|
__all__ = ['ShuffleNetV2', 'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'shufflenet_v2_x1_5', 'shufflenet_v2_x2_0']
|
|
|
|
def channel_shuffle(x, groups):
|
|
(batchsize, num_channels, height, width) = x.data.shape
|
|
channels_per_group = (num_channels // groups)
|
|
x = jt.reshape(x, [batchsize, groups, channels_per_group, height, width])
|
|
x = jt.transpose(x, (0,2,1,3,4))
|
|
x = jt.reshape(x, [batchsize, (- 1), height, width])
|
|
return x
|
|
|
|
class InvertedResidual(nn.Module):
|
|
|
|
def __init__(self, inp, oup, stride):
|
|
super(InvertedResidual, self).__init__()
|
|
if (not (1 <= stride <= 3)):
|
|
raise ValueError('illegal stride value')
|
|
self.stride = stride
|
|
branch_features = (oup // 2)
|
|
assert ((self.stride != 1) or (inp == (branch_features << 1)))
|
|
if (self.stride > 1):
|
|
self.branch1 = nn.Sequential(self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1), nn.BatchNorm(inp), nn.Conv(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm(branch_features), nn.Relu())
|
|
else:
|
|
self.branch1 = nn.Sequential()
|
|
self.branch2 = nn.Sequential(nn.Conv((inp if (self.stride > 1) else branch_features), branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm(branch_features), nn.Relu(), self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1), nn.BatchNorm(branch_features), nn.Conv(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm(branch_features), nn.Relu())
|
|
|
|
@staticmethod
|
|
def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
|
|
return nn.Conv(i, o, kernel_size, stride, padding, bias=bias, groups=i)
|
|
|
|
def execute(self, x):
|
|
if (self.stride == 1):
|
|
x1 = x[:,0:x.shape[1]//2]
|
|
x2 = x[:,x.shape[1]//2:x.shape[1]]
|
|
out = jt.contrib.concat([x1, self.branch2(x2)], dim=1)
|
|
else:
|
|
out = jt.contrib.concat([self.branch1(x), self.branch2(x)], dim=1)
|
|
out = channel_shuffle(out, 2)
|
|
return out
|
|
|
|
class ShuffleNetV2(nn.Module):
|
|
|
|
def __init__(self, stages_repeats, stages_out_channels, num_classes=1000, inverted_residual=InvertedResidual):
|
|
super(ShuffleNetV2, self).__init__()
|
|
if (len(stages_repeats) != 3):
|
|
raise ValueError('expected stages_repeats as list of 3 positive ints')
|
|
if (len(stages_out_channels) != 5):
|
|
raise ValueError('expected stages_out_channels as list of 5 positive ints')
|
|
self._stage_out_channels = stages_out_channels
|
|
input_channels = 3
|
|
output_channels = self._stage_out_channels[0]
|
|
self.conv1 = nn.Sequential(nn.Conv(input_channels, output_channels, 3, 2, 1, bias=False), nn.BatchNorm(output_channels), nn.Relu())
|
|
input_channels = output_channels
|
|
self.maxpool = nn.Pool(kernel_size=3, stride=2, padding=1, op='maximum')
|
|
stage_names = ['stage{}'.format(i) for i in [2, 3, 4]]
|
|
for (name, repeats, output_channels) in zip(stage_names, stages_repeats, self._stage_out_channels[1:]):
|
|
seq = [inverted_residual(input_channels, output_channels, 2)]
|
|
for i in range((repeats - 1)):
|
|
seq.append(inverted_residual(output_channels, output_channels, 1))
|
|
setattr(self, name, nn.Sequential(*seq))
|
|
input_channels = output_channels
|
|
output_channels = self._stage_out_channels[(- 1)]
|
|
self.conv5 = nn.Sequential(nn.Conv(input_channels, output_channels, 1, 1, 0, bias=False), nn.BatchNorm(output_channels), nn.Relu())
|
|
self.fc = nn.Linear(output_channels, num_classes)
|
|
|
|
def _forward_impl(self, x):
|
|
x = self.conv1(x)
|
|
x = self.maxpool(x)
|
|
x = self.stage2(x)
|
|
x = self.stage3(x)
|
|
x = self.stage4(x)
|
|
x = self.conv5(x)
|
|
x = x.mean([2, 3])
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
def execute(self, x):
|
|
return self._forward_impl(x)
|
|
|
|
def _shufflenetv2(arch, *args):
|
|
model = ShuffleNetV2(*args)
|
|
return model
|
|
|
|
def shufflenet_v2_x0_5():
|
|
return _shufflenetv2('shufflenetv2_x0.5', [4, 8, 4], [24, 48, 96, 192, 1024])
|
|
|
|
def shufflenet_v2_x1_0():
|
|
return _shufflenetv2('shufflenetv2_x1.0', [4, 8, 4], [24, 116, 232, 464, 1024])
|
|
|
|
def shufflenet_v2_x1_5():
|
|
return _shufflenetv2('shufflenetv2_x1.5', [4, 8, 4], [24, 176, 352, 704, 1024])
|
|
|
|
def shufflenet_v2_x2_0():
|
|
return _shufflenetv2('shufflenetv2_x2.0', [4, 8, 4], [24, 244, 488, 976, 2048])
|