JittorMirror/python/jittor/models/squeezenet.py

91 lines
3.6 KiB
Python

# ***************************************************************
# Copyright (c) 2020 Jittor. Authors:
# Wenyang Zhou <576825820@qq.com>
# Dun Liang <randonlang@gmail.com>.
# All Rights Reserved.
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
# This model is generated by pytorch converter.
import jittor as jt
from jittor import nn
__all__ = ['SqueezeNet', 'squeezenet1_0', 'squeezenet1_1']
class Fire(nn.Module):
def __init__(self, inplanes, squeeze_planes, expand1x1_planes, expand3x3_planes):
super(Fire, self).__init__()
self.inplanes = inplanes
self.squeeze = nn.Conv(inplanes, squeeze_planes, kernel_size=1)
self.squeeze_activation = nn.Relu()
self.expand1x1 = nn.Conv(squeeze_planes, expand1x1_planes, kernel_size=1)
self.expand1x1_activation = nn.Relu()
self.expand3x3 = nn.Conv(squeeze_planes, expand3x3_planes, kernel_size=3, padding=1)
self.expand3x3_activation = nn.Relu()
def execute(self, x):
x = self.squeeze_activation(self.squeeze(x))
return jt.contrib.concat([self.expand1x1_activation(self.expand1x1(x)), self.expand3x3_activation(self.expand3x3(x))], dim=1)
class SqueezeNet(nn.Module):
def __init__(self, version='1_0', num_classes=1000):
super(SqueezeNet, self).__init__()
self.num_classes = num_classes
if (version == '1_0'):
self.features = nn.Sequential(
nn.Conv(3, 96, kernel_size=7, stride=2),
nn.Relu(),
nn.Pool(kernel_size=3, stride=2, ceil_mode=True, op='maximum'),
Fire(96, 16, 64, 64),
Fire(128, 16, 64, 64),
Fire(128, 32, 128, 128),
nn.Pool(kernel_size=3, stride=2, ceil_mode=True, op='maximum'),
Fire(256, 32, 128, 128),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
nn.Pool(kernel_size=3, stride=2, ceil_mode=True, op='maximum'),
Fire(512, 64, 256, 256)
)
elif (version == '1_1'):
self.features = nn.Sequential(
nn.Conv(3, 64, kernel_size=3, stride=2),
nn.Relu(),
nn.Pool(kernel_size=3, stride=2, ceil_mode=True, op='maximum'),
Fire(64, 16, 64, 64),
Fire(128, 16, 64, 64),
nn.Pool(kernel_size=3, stride=2, ceil_mode=True, op='maximum'),
Fire(128, 32, 128, 128),
Fire(256, 32, 128, 128),
nn.Pool(kernel_size=3, stride=2, ceil_mode=True, op='maximum'),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
Fire(512, 64, 256, 256)
)
else:
raise ValueError('Unsupported SqueezeNet version {version}:1_0 or 1_1 expected'.format(version=version))
final_conv = nn.Conv(512, self.num_classes, kernel_size=1)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
final_conv,
nn.Relu(),
nn.AdaptiveAvgPool2d((1, 1))
)
def execute(self, x):
x = self.features(x)
x = self.classifier(x)
return jt.reshape(x, (x.shape[0], (- 1)))
def _squeezenet(version, **kwargs):
model = SqueezeNet(version, **kwargs)
return model
def squeezenet1_0(**kwargs):
return _squeezenet('1_0', **kwargs)
def squeezenet1_1(**kwargs):
return _squeezenet('1_1', **kwargs)