JittorMirror/python/jittor/pool.py

194 lines
9.1 KiB
Python

# ***************************************************************
# Copyright (c) 2020 Jittor. Authors:
# Guowei Yang <471184555@qq.com>
# Wenyang Zhou <576825820@qq.com>
# Meng-Hao Guo <guomenghao1997@gmail.com>
# Dun Liang <randonlang@gmail.com>.
#
# All Rights Reserved.
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import jittor as jt
from jittor import init, Module
import numpy as np
import math
class Pool(Module):
def __init__(self, kernel_size, stride=None, padding=0, dilation=None, return_indices=None, ceil_mode=False, op="maximum"):
assert dilation == None
assert return_indices == None
self.kernel_size = kernel_size
self.op = op
self.stride = stride if stride else kernel_size
self.padding = padding
self.ceil_mode = ceil_mode
def execute(self, x):
N,C,H,W = x.shape
if (self.ceil_mode == False):
h = (H+self.padding*2-self.kernel_size)//self.stride+1
w = (W+self.padding*2-self.kernel_size)//self.stride+1
else:
h = (H+self.padding*2-self.kernel_size + self.stride - 1)//self.stride+1
w = (W+self.padding*2-self.kernel_size + self.stride - 1)//self.stride+1
if (self.op == 'maximum' or self.op == 'minimum'):
if (self.op == 'maximum'):
op = 'max'
else:
op = 'min'
out = jt.code([N,C,h,w], x.dtype, [x],
cuda_src=f'''
__global__ static void kernel1(@ARGS_DEF) {{
@PRECALC
int p3 = threadIdx.x;
int s3 = blockDim.x;
int p2 = threadIdx.y + blockIdx.x * blockDim.y;
int s2 = blockDim.y * gridDim.x;
int i1 = blockIdx.y;
int i0 = blockIdx.z;
for (int i3 = p3; i3 < outshape3; i3 += s3)
for (int i2 = p2; i2 < outshape2; i2 += s2) {{
int k3 = i3*{self.stride}-{self.padding};
int k2 = i2*{self.stride}-{self.padding};
int k3_ = min(k3 + {self.kernel_size}, in0shape3);
int k2_ = min(k2 + {self.kernel_size}, in0shape2);
k3 = max(0, k3);
k2 = max(0, k2);
@out(i0, i1, i2, i3) = @in0(i0, i1, k2, k3);
for (int p = k2; p < k2_; ++p)
for (int q = k3; q < k3_; ++q)
@out(i0, i1, i2, i3) = {op}(@out(i0, i1, i2, i3), @in0(i0, i1, p, q));
}}
}}
int tx = min(1024, outshape3);
int ty = min(1024 / tx, outshape2);
int bx = (outshape2 - 1) / ty + 1;
int by = outshape1;
int bz = outshape0;
dim3 s1(bx, by, bz);
dim3 s2(tx, ty);
kernel1<<<s1, s2>>>(@ARGS);
''',
cuda_grad_src=[f'''
__global__ static void kernel3(@ARGS_DEF) {{
@PRECALC
int p3 = threadIdx.x;
int s3 = blockDim.x;
int p2 = threadIdx.y + blockIdx.x * blockDim.y;
int s2 = blockDim.y * gridDim.x;
int i1 = blockIdx.y;
int i0 = blockIdx.z;
for (int i3 = p3; i3 < poutshape3; i3 += s3)
for (int i2 = p2; i2 < poutshape2; i2 += s2) {{
int k3 = i3*{self.stride}-{self.padding};
int k2 = i2*{self.stride}-{self.padding};
int k3_ = min(k3 + {self.kernel_size}, in0shape3);
int k2_ = min(k2 + {self.kernel_size}, in0shape2);
k3 = max(0, k3);
k2 = max(0, k2);
int bo=1;
for (int p = k2; p < k2_ && bo; ++p)
for (int q = k3; q < k3_ && bo; ++q) {{
if (@pout(i0,i1,i2,i3) == @in0(i0,i1,p,q)) {{
atomicAdd(&@out(i0,i1,p,q), @dout(i0,i1,i2,i3));
bo=0;
}}
}}
}}
}}
cudaMemsetAsync(outp, 0, out->size);
int tx = min(1024, poutshape3);
int ty = min(1024 / tx, poutshape2);
int bx = (poutshape2 - 1) / ty + 1;
int by = poutshape1;
int bz = poutshape0;
dim3 s1_(bx, by, bz);
dim3 s2_(tx, ty);
kernel3<<<s1_, s2_>>>(@ARGS);
'''],
cpu_src=f'''
for (int i0=0; i0<outshape0; i0++)
for (int i1=0; i1<outshape1; i1++)
for (int i2=0; i2<outshape2; i2++)
for (int i3=0; i3<outshape3; i3++) {{
int k2 = i2*{self.stride}-{self.padding};
int k3 = i3*{self.stride}-{self.padding};
int k2_ = std::min(k2 + {self.kernel_size}, in0shape2);
int k3_ = std::min(k3 + {self.kernel_size}, in0shape3);
k2 = std::max(0, k2);
k3 = std::max(0, k3);
@out(i0, i1, i2, i3) = @in0(i0, i1, k2, k3);
for (int p = k2; p < k2_; ++p)
for (int q = k3; q < k3_; ++q)
@out(i0, i1, i2, i3) = std::{op}(@out(i0, i1, i2, i3), @in0(i0, i1, p, q));
}}
''',
cpu_grad_src = [f'''
for (int i=0; i<outshape0; i++)
for (int j=0; j<outshape1; j++)
for (int k=0; k<outshape2; k++)
for (int l=0; l<outshape3; l++) @out(i,j,k,l) = 0;
for (int i0=0; i0<poutshape0; i0++)
for (int i1=0; i1<poutshape1; i1++)
for (int i2=0; i2<poutshape2; i2++)
for (int i3=0; i3<poutshape3; i3++) {{
int k3 = i3*{self.stride}-{self.padding};
int k2 = i2*{self.stride}-{self.padding};
int k3_ = std::min(k3 + {self.kernel_size}, in0shape3);
int k2_ = std::min(k2 + {self.kernel_size}, in0shape2);
k3 = std::max(0, k3);
k2 = std::max(0, k2);
int bo=1;
for (int p = k2; p < k2_ && bo; ++p)
for (int q = k3; q < k3_ && bo; ++q) {{
if (@pout(i0,i1,i2,i3) == @in0(i0,i1,p,q)) {{
@out(i0,i1,p,q) += @dout(i0,i1,i2,i3);
bo=0;
}}
}}
}}
'''])
return out
else:
xx = x.reindex([N,C,h,w,self.kernel_size,self.kernel_size], [
"i0", # Nid
"i1", # Cid
f"i2*{self.stride}-{self.padding}+i4", # Hid
f"i3*{self.stride}-{self.padding}+i5", # Wid
])
return xx.reduce(self.op, [4,5])
class AdaptiveAvgPool2d(Module):
def __init__(self, output_size):
self.output_size = output_size
def execute(self, x):
if isinstance(self.output_size, int):
oh = self.output_size
ow = self.output_size
elif isinstance(self.output_size, tuple) or isinstance(self.output_size, list):
oh = x.shape[2] if self.output_size[0] is None else self.output_size[0]
ow = x.shape[3] if self.output_size[1] is None else self.output_size[1]
else:
raise TypeError(f"AdaptiveAvgPool2d only support int, typle or list input. Not support {type(self.output_size)} yet.")
N,C,H,W = x.shape
self.sh = math.floor(H / oh)
self.sw = math.floor(W / ow)
self.ksh = H - (oh - 1) * self.sh
self.ksw = W - (ow - 1) * self.sw
h = (H-self.ksh)//self.sh+1
w = (W-self.ksw)//self.sw+1
xx = x.reindex([N,C,h,w,self.ksh,self.ksw], [
"i0", # Nid
"i1", # Cid
f"i2*{self.sh}+i4", # Hid
f"i3*{self.sw}+i5", # Wid
])
return xx.reduce("mean", [4,5])
def pool(x, kernel_size, op, padding=0, stride = 1):
return Pool(kernel_size, stride, padding, op=op)(x)